Skip to main content
Log in

Molecular Indications for In Vivo Integration of the Avian Leukosis Virus, Subgroup J-long Terminal Repeat into the Marek's Disease Virus in Experimentally Dually-Infected Chickens

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Marek's disease virus, a herpesvirus, and avian leukosis virus, subgroup J, a retrovirus, are oncogenic viruses of poultry. Both viruses may infect the same flock, the same bird and the same cell. In a double-infected cell, the retroviral DNA can integrate into the cellular or the Marek's disease virus (MDV) genome. The retroviral long terminal repeat (LTR) integration into MDV was first described by Isfort et al., (Proc Natl Acad Sci 89, 991–995, 1992) [1] following tissue culture co-infection. The recombinant virus isolated, RM1, had altered biological properties compared to the parental MDV (Witter R.L., Li D., Jones D., and Kung H.-J., Avian Dis 41, 407–421, 1997) [2]. The issue of retroviral sequence integration into herpesviruses in vivo, in cases of double-virus infection is of wide significance in general virology and veterinary medicine; it also represents a special case of gene transposition. Using the avian system, we aimed to determine occurrence of such integrations in vivo. Chickens were experimentally co-infected with both avian leukosis virus (ALV) subgroup J and with MDV. To demonstrate the presence of the retroviral LTR in the MDV genome we applied the Hot Spot-combined PCR assay (Borenshtain R. and Davidson I., J Virol Meth 82, 119–127, 1999) [3] that consisted of two consecutive steps of amplification. By that HS-cPCR assay, certain MDV genomic sites, defined as HS for integration were specifically amplified, the HS step, and then subjected to screening in an attempt to detect LTR inserts. The screening was achieved by amplification using heterologous primer sets, one for the MDV hot spot and the other for the retroviral LTR, the cPCR step. The products were Southern blotted and hybridized with MDV and ALV-LTR probes. Chimeric molecules were detected and evidenced by an intense signal in 3/10 chickens and weakly in other 3/10 birds.

Detection was by LTR amplification, sequencing and multiple alignment to the ALV-J-LTR sequence. The present study indicated that chimeric molecules were produced in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isfort R., Jones D., Kost R., Witter R., and Kung H.-J., Proc Natl Acad Sci 89, 991-995, 1992.

    Google Scholar 

  2. Witter R.L., Li D., Jones D., and Kung H.-J., Avian Dis 41, 407-421, 1997.

    Google Scholar 

  3. Borenshtain R. and Davidson I., J Virol Meth 82, 119-127, 1999.

    Google Scholar 

  4. Calnek B.W. and Witter L., in Calnek B.W., Barnes H.J., Beard C.W., and Yoder Jr. H.W. (eds), Disease of Poultry. 9th edn. Iowa State University Press, Ames, Iowa, USA, 1997, 369-413.

    Google Scholar 

  5. Payne L.N., Avian Pathol 27, S36-S45, 1998.

    Google Scholar 

  6. Davidson I., Borowsk A., Perl S., and Malkinson M., Avian Pathol 24, 69-94, 1995.

    Google Scholar 

  7. Davidson I. and Borenshtain R., Avian Dis 45, 102-121, 2001.

    Google Scholar 

  8. Ambroziak J.A., Blackbourn D.J., Herndier B.G., Glogau R.G., Gullett J.M., McDonald A.R., Lennette E.T., and Levy J.A., Science 268, 582-583, 1995.

    Google Scholar 

  9. Staskus K.A., Zhong W., Gebhard K., Herndier B., Wang H., Renne R., Beneke J., Pudney J., Anderson D.J., Ganem D., and Haase T., J Virol 71, 715-719, 1997.

    Google Scholar 

  10. Mesri E.A., Cesarman E., Arvanitakis L., Rafii S., Moore M.A., Posnett D.N., and Asch S., J Exp Med 183, 2385-2390, 1996.

    Google Scholar 

  11. Kawaguchi Y. and Mikami T., J Vet Med Sci 57, 801-811, 1995.

    Google Scholar 

  12. Isfort R., Qian Z., Jones D., Silva R.F., Witter R., and Kung H.-J., Virology 203, 125-133, 1994.

    Google Scholar 

  13. Jones D., Isfort R., Witter R.L., Kost R., and Kung H.-J., Proc Natl Acad Sci 90, 3855-3859, 1993.

    Google Scholar 

  14. Jones D., Bronovskis P., Witter R.L., and Kung H.-J., J Virol 70, 2460-2467, 1996.

    Google Scholar 

  15. Kost R., Jones D., Isfort R., Witter R.L., and Kung H.-J., Virology 192, 161-169, 1993.

    Google Scholar 

  16. Sakaguchi M., Sonoda K., Matsuo K., Zhu G.-S., and Hirai K., Virus Genes 14, 157-162, 1997.

    Google Scholar 

  17. Endoh D., Ito M., Cho K.-O., Kon Y., Morimura T., Hayashi M., and Kuwabara M., J Vet Med Sci 60, 227-235, 1998.

    Google Scholar 

  18. Bronovskis P. and Kung H.-J., Virus Genes 11, 259-270, 1996.

    Google Scholar 

  19. Payne L.N., and Purchase H.G., in Calnek B.W., Barnes H.J., Beard C.W., and Yoder Jr. H.W. (eds.), Disease of Poultry. 9th edn. Iowa State University Press, Ames, Iowa, USA, 1997, pp. 414-466.

    Google Scholar 

  20. Bai J., Payne L.N., and Skinner M.A., J Virol 69, 779-784, 1995.

    Google Scholar 

  21. Hertig C., Coupar B.E.H., Gould A.R., and Boyle D.B., Virology 235, 367-376, 1997.

    Google Scholar 

  22. Moore K.M., Davis J.R., Sato T., and Yasuda A., Avian Dis 44, 827-841, 2000.

    Google Scholar 

  23. Whitley R.J., in Fields B.N., Knipe D.M., and Howley P.M. (eds), Virology. 3rd edn. Lippincott-Raven Pub. Philadelphia-New York, 1995.

    Google Scholar 

  24. Rezza G., Andreoni M., Dorrucci M., Pezzotti P., Monini P., Zerboni R., Salassa B., Colangeli V., Sarmati L., Nicastri E., Barbanera M., Pristera R., Aiuti F., Ortona L., and Ensoli B., J Natl Cancer Inst 91, 1468-1474, 1999.

    Google Scholar 

  25. Schulz T.F. and Moore P.S., Trends Microbiol 7, 196-200, 1999.

    Google Scholar 

  26. Takasaki T., Ohkawa N., Sano K., Morimatsu S., Nakano T., Nakai M., Yamaguchi J., and Kurane I., Acta Virologica 41, 221-229, 1997.

    Google Scholar 

  27. Campadelli-Fiume G., Mirandola P., and Menolli L., Emerging Infec Dis 5, 353-366, 1999.

    Google Scholar 

  28. Becker Y., Asher Y., Tabor E., Davidson I., Malkinson M., and Weisman Y., J Virol Meth 40, 307-322, 1992.

    Google Scholar 

  29. Smith L.M., Brown S.R., Howes K., McLeod S., Arshad S.S., Barron G.S., Venugopal K., McKay J.C., and Payne N., Virus Res 54, 87-98, 1998.

    Google Scholar 

  30. Chen H.R. and Barker W.C., Nucleic Acid Res 12, 1767-1776, 1984.

    Google Scholar 

  31. Habel D.E., Dohrer K.L., and Conklin K.F., J Virol 67, 1545-1554, 1993.

    Google Scholar 

  32. Buranthai C., Rodrigez J., and Grose C., Virology 239, 20-35, 1997.

    Google Scholar 

  33. Pearson W.R. and Lipman D.J., Proc Natl Acad Sci 85, 2444-2448, 1988.

    Google Scholar 

  34. Delecluse H.-J., Schuller S., and Hammerschmidt W., The EMBO J 12, 3277-3286, 1993.

    Google Scholar 

  35. Kaschka-Dierich C., Nazerian K., and Thomssen R., J Gen Virol 44, 271-280, 1979.

    Google Scholar 

  36. Rhiza H.-J, and Bauer B., Arch Virol 72, 211-216, 1982.

    Google Scholar 

  37. Van Regenmortel M.H., ASM News 64, 683-687, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, I., Borenshtain, R., Kung, HJ. et al. Molecular Indications for In Vivo Integration of the Avian Leukosis Virus, Subgroup J-long Terminal Repeat into the Marek's Disease Virus in Experimentally Dually-Infected Chickens. Virus Genes 24, 173–180 (2002). https://doi.org/10.1023/A:1014528818179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014528818179

Navigation