Skip to main content
Log in

Far infrared sub-nanosecond pulse generation in GaP with a time-synchronized mode-locked double-frequency Nd: Glass laser system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Light pulses of 149 μm wavelength and 700 ps duration are generated by non-collinear phase-matched difference frequency mixing of laser pulses at 1053.5 and 1061 nm in a (110) cut GaP crystal. The pump laser pulses are generated in a time-synchronized mode-locked double-frequency Nd:glass laser system consisting of a silicate glass branch and a phosphate glass branch. A photon conversion efficiency of 4 × 10−6 is achieved. The non-linear susceptibility constant of GaP is determined to be d 14 = (10 ± 1) pm V−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal, R.L. and B. Lax. In: Nonlinear Infrared Generation, Top. Appl. Phys., ed. Y.R. Shen, Vol. 16, p. 19. Springer, Berlin, 1977.

    Google Scholar 

  • Aggarwal, R.L., B. Lax, H.R. Fetterman, P.E. Tannenwald and B.J. Clifton. J. Appl. Phys. 45 3927, 1974.

    Google Scholar 

  • Auston, D.H., K.P. Cherny, J.A. Valdmanis and D.A. Kleinman. Phys. Rev. Lett. 35 1555, 1984.

    Google Scholar 

  • Barker, A.S. Phys. Rev. 165 917, 1968.

    Google Scholar 

  • Bechtel, J.H. and W.L. Smith. Phys. Rev. B 13 3515, 1976.

    Google Scholar 

  • Benicewitz, P.K., J.P. Roberts and A.J. Taylor. J. Opt. Soc. Am. 11 1533, 1994.

    Google Scholar 

  • Berger, M.R. Eigenschaften optischer Materialien, Oriel GmbH, Darmstadt, Germany, 1981.

    Google Scholar 

  • Born, M. and E. Wolf. Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn., Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  • Boyd, C.D., T.J. Bridges, M.A. Pollack and E.H. Turner. Phys. Rev. Lett. 26 387, 1971.

    Google Scholar 

  • Bridges, T.J. and A.R. Strnad. Appl. Phys. Lett. 20 382, 1972.

    Google Scholar 

  • Butcher, P.N. and D. Cotter. The Elements of Nonlinear Optics, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  • Chantry, G.W. Submillimetre Spectroscopy: a Guide to the Theoretical and Experimental Physics of the Far Infrared, p. 132. Academic Press, London, 1971.

    Google Scholar 

  • De Martini, F. Phys. Lett. 30A 547, 1969.

    Google Scholar 

  • Dimitriev, V.G., G.G. Gurzadyan and D.N. Nikogosyan. Handbook of Nonlinear Optical Crystals, Springer, Berlin, 1990.

    Google Scholar 

  • Fattinger, C. and D. Grischkowsky. Appl. Phys. Lett. 53 1480, 1988.

    Google Scholar 

  • Faust, W.L. and C. Henry, Phys. Rev. Letters 17 1265, 1966.

    Google Scholar 

  • Faust, W.L., C.H. Henry and R.H. Eick. Phys. Rev. 173 781, 1968.

    Google Scholar 

  • Harper, P.G. Opt. Commun. 10 68, 1974.

    Google Scholar 

  • Henry, C.H. and J.J. Hopfield. Phys. Rev. Lett. 15 964, 1965.

    Google Scholar 

  • Kato, R., S. Okuda, G. Kondo, H. Kobayashi, T. Igo, S. Suemine and G. Isoyama. Nucl. Instrum. Methods Phys. Res. Section A (Accelerators, Spectrometer) 429 146, 1999.

    Google Scholar 

  • Krishnagopal, S. and V. Kumar. Opt. Commun. 119 313, 1995.

    Google Scholar 

  • Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology. In: New Series, Group III, Vol 17a. Semiconductors. Physics of Group IV Elements and III-V Compounds, ed. O. Madelung, p. 185. Springer, Berlin, 1982.

    Google Scholar 

  • Laubereau, A., D. von der Linde and W. Kaiser. Opt. Commun. 7 173, 1973.

    Google Scholar 

  • Lee, N., B. Lax and R.L. Aggarwal. Opt. Commun. 18 50, 1976.

    Google Scholar 

  • Miller, R.C. Appl. Phys. Lett. 5 17, 1964.

    Google Scholar 

  • Nelson, D.F. and E.H. Turner. J. Appl. Phys. 39 3337, 1968.

    Google Scholar 

  • Nguyen, V.T. and T.J. Bridges. In: Nonlinear Infrared Generation, Top. Appl. Phys., ed. Y.R. Shen, Vol. 16, p. 140. Springer, Berlin, 1977.

    Google Scholar 

  • Palik, E.D. Handbook of Optical Constants of Solids, Vol. 1. Academic Press, Orlando, 1985.

    Google Scholar 

  • Penzkofer, A., W. Falkenstein and W. Kaiser. Appl. Phys. Lett. 28 319, 1976.

    Google Scholar 

  • Qui, T., T. Tillert and M. Maier. Opt. Commun. 119 149, 1995.

    Google Scholar 

  • Schillinger, H. and A. Penzkofer. Opt. Commun. 68 45, 1988.

    Google Scholar 

  • Shen, Y.R. Prog. Quantum Electron. 4 207, 1976.

    Google Scholar 

  • Steinkellner, O., J. Furthner and A. Penzkofer. Opt. Quantum Electron. 28 1773, 1996.

    Google Scholar 

  • Ushioda, S. and J.D. McMullen. Solid State Commun. 11 299, 1972.

    Google Scholar 

  • Zhang, X.-C. Phys. Rev. Lett. 69 2303, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penzkofer, A., Riediger, M., Steinkellner, O. et al. Far infrared sub-nanosecond pulse generation in GaP with a time-synchronized mode-locked double-frequency Nd: Glass laser system. Optical and Quantum Electronics 34, 343–357 (2002). https://doi.org/10.1023/A:1015090206168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015090206168

Navigation