Skip to main content
Log in

Distribution and Elimination of the Glycosidase Inhibitors 1-Deoxymannojirimycin and N-Methyl-1-Deoxynojirimycin in the Rat in Vivo

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

We studied the pharmacokinetics of two synthetic derivatives of 1-deoxynojirimycin in the rat after intravenous administration. The mannosidase IA/B inhibitor 1-deoxymannojirimycin and the glucosidase inhibitor N-methyl- 1-deoxynojirimycin exhibited minimal plasma protein binding and showed a rapid biphasic plasma disappearance, with an initial t 1/2 of 3.0 and 4.5 min, respectively, and a terminal t 1/2 of 51 and 32 min, respectively. For both compounds renal excretion is the major route of elimination. After 120 min, 52% of the dose of 1-deoxymannojirimycin and 80% of the dose of N-methyl- 1-deoxymannojirimycin was recovered unchanged from the urine, whereas only 4.9 and 0.2%, respectively, of the dose was excreted in bile. Urinary clearance of 1-deoxymannojirimycin was similar to the glomerular filtration rate. In contrast, urinary clearance of N-methyl- 1-deoxynojirimycin was two to three times higher than the glomerular filtration rate, indicating active tubular secretion. Ligation of the renal vessels decreased the total-body clearance of 1-deoxymannojirimycin and N-methyl- 1-deoxynojirimycin 18- and 24-fold, respectively. Neither alkalinization of the urine by infusion of bicarbonate solutions nor forced diuresis altered the renal excretion rate of these compounds, implying the absence of tubular reabsorption. At 120 min, the amounts of 1-deoxymannojirimycin in liver and kidney were 2.1 and 1.1% of the dose, respectively, while small intestine, stomach, and heart contained only 0.9, 0.6 and 0.1%. Less than 1% of the dose of N-methyl-1-deoxynojirimycin was found in the collected organs 2 hr after injection. At the same time point, the kidney/plasma concentration ratio of N-methyl- 1-deoxynojirimycin was 10-fold higher than in other tissues, whereas for 1-deoxymannojirimycin it was only 2- to 3-fold higher in kidney, indicating a more persistent general tissue retention of 1-deoxymannojirimycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. Fuhrmann, E. Bause, and H. L. Ploegh. Inhibitors of oligosaccharide processing. Biochim. Biophys. Acta 825:95–110 (1985).

    Google Scholar 

  2. A. D. Elbein. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu. Rev. Biochem. 56:497–534 (1987).

    Google Scholar 

  3. V. Gross, T. Andus, T. A. Tran-Thi, R. T. Schwarz, K. Decker, and P. C. Heinrich. 1-Deoxynojirimycin impairs oligosaccharide processing of α1-proteinase inhibitor and inhibits its secretion in primary cultures of rat hepatocytes. J. Biol. Chem. 258:12203–12209 (1983).

    Google Scholar 

  4. V. Gross, T. A. Tran-Thi, R. T. Schwarz, A. D. Elbein, K. Decker, and P. C. Heinrich. Different effects of the glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine on the glycosylation of rat α1-proteinase inhibitor and α1-acid glycoprotein. Biochem. J. 236:853–860 (1986).

    Google Scholar 

  5. J. B. Parent, T. K. Yeo, K. T. Yeo, and K. Olden. Differential effects of 1-deoxynojirimycin on the intracellular transport of secretory glycoproteins of human hepatoma cells in culture. Mol. Cell. Biochem. 72:21–33 (1986).

    Google Scholar 

  6. K. M. Robinson, B. L. Rhinehart, M. E. Begovic, C. H. R. King, and P. S. Liu. Castanospermine-glucosides are potent, selective, long-acting sucrase inhibitors. J. Pharmacol. Exp. Ther. 251:224–229 (1989).

    Google Scholar 

  7. G. Heinz, M. Komjati, A. Korn, and W. Waldhausl. Reduction of postprandial blood glucose by the α-glucosidase inhibitor Miglitol (BAY m 1099) in Type II diabetes. Eur. J. Clin. Pharmacol. 37:33–36 (1989).

    Google Scholar 

  8. M. J. Humphries, K. Matsumoto, S. L. White, and K. Olden. Inhibition of experimental metastasis by castanospermine in mice: Blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Cancer Res. 46:5215–5222 (1986).

    Google Scholar 

  9. R. A. Gruters, J. J. Neefjes, M. Tersmette, R. E. Y. De Goede, A. Tulp, H. G. Huisman, F. Miedema, and H. L. Ploegh. Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Nature 330:74–77 (1987).

    Google Scholar 

  10. L. Ratner, N. Van der Heyden, and D. Dedera. Inhibition of HIV and SIV Infectivity by blockade of alpha-glucosidase activity. Virology 181:180–192 (1991).

    Google Scholar 

  11. J. J. Neefjes, J. Lindhout, H. J. G. Broxterman, G. A. Van der Marel, J. H. Van Boom, and H. L. Ploegh. Non-carrier-mediated uptake of the mannosidase I inhibitor 1-deoxymannojirimycin by K562 erythroleukemic cells. J. Biol. Chem. 264:10271–10275 (1989).

    Google Scholar 

  12. R. Saul, R. J. Molyneux, and A. D. Elbein. Studies on the mechanism of castanospermine inhibition of α-and β-glycosidases. Arch. Biochem. Biophys. 230:668–675 (1984).

    Google Scholar 

  13. U. Fuhrmann, E. Bause, G. Legler, and H. L. Ploegh. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Nature 307:755–758 (1984).

    Google Scholar 

  14. M. Bollen, A. Van de Broeck, and W. Stalmans. 1-Deoxynojirimycin and related compounds inhibit glucogenolysis in the liver without affecting the concentration of phosphorylase a. Biochem. Pharmacol. 37:905–909 (1988).

    Google Scholar 

  15. M. Bollen and W. Stalmans. The antiglycogenolytic action of 1-deoxynojirimycin results from a specific inhibition of the α-1,6-glucosidase activity of the debranching enzyme. Eur. J. Biochem. 181:775–780 (1989).

    Google Scholar 

  16. G. Legler and E. Juelich. Synthesis of 5-amino-5-deoxy-D-mannopyranose and 1,5-di-deoxy-1,5-imino-D-mannitol, and inhibition of alpha-and beta-D-mannosidases. Carbohydr. Res. 128:61–72 (1984).

    Google Scholar 

  17. J. Schweden, C. Borgmann, G. Legler, and E. Bause. Characterization of calf liver glucosidase I and its inhibition by basic sugar analogues. Arch. Biochem. Biophys. 248:335–340 (1986).

    Google Scholar 

  18. R. M. Ruprecht, L. D. Bernard, R. Bronson, M. A. G. Sosa, and S. Mullaney. Castanospermine vs its 6-O-Butanoyl analog—A comparison of toxicity and antiviral activity in vitro and in vivo. J. Acquir. Immune Defic. Syndr. 4:48–55 (1991).

    Google Scholar 

  19. H. J. G. Broxterman, J. J. Neefjes, G. A. Van der Marel, H. L. Ploegh, and J. H. Van Boom. Synthesis of the antibiotic 1,5-dideoxy-1,5-imino-D-mannitol. J. Carbohydr. Chem. 7:593–603 (1988).

    Google Scholar 

  20. C. Neef, R. Oosting, and D. K. F. Meijer. Structure-pharmacokinetics relationship of quaternary ammonium compounds. Elimination and distribution characteristics. Naunyn Schmiedebergs Arch. Pharmacol. 328:103–110 (1984).

    Google Scholar 

  21. G. J. Mulder, E. Scholtens, and D. K. F. Meijer. Collection of metabolites in bile and urine from the rat. In W. B. Jakoby (ed.), Methods in Enzymology, Vol. 77 Academic Press, New York, 1981, pp. 21–30.

    Google Scholar 

  22. W. S. Bivin, M. P. Crawford, and N. R. Brewer. Morphophysiology. In H. J. Baker, J. R. Lindsey, and S. H. Weisbroth (eds.), The Laboratory Rat Academic Press, New York, 1979, pp. 73–103.

    Google Scholar 

  23. C. Neef and D. K. F. Meijer. Structure-pharmacokinetics relationship of quaternary ammonium compounds. Correlation of physicochemical and pharmacokinetic parameters. Naunyn Schmiedebergs Arch. Pharmacol. 328:111–118 (1984).

    Google Scholar 

  24. M. Rowland and T. N. Tozer. Clinical Pharmacokinetics: Concepts and Applications Lea & Febiger, Philadelphia/London, 1989.

    Google Scholar 

  25. A. Tan, L. van den Broek, C. Van Boeckel, H. Ploegh, and J. Bolscher. Chemical modification of the glucosidase inhibitor 1-deoxynojirimycin: structure-activity relationships. J. Biol. Chem. 266:14504–14510 (1991).

    Google Scholar 

  26. C. A. M. Van Ginneken and F. G. M. Russel. Saturable pharmacokinetics in the renal excretion of drugs. Clin. Pharmacokinet. 16:38–54 (1989).

    Google Scholar 

  27. L. Peters. Renal tubular excretion of organic bases. Pharmacol. Rev. 12:1–35 (1960).

    Google Scholar 

  28. E. L. Forker. Hepatocellular uptake of inulin, sucrose and mannitol in rats. Am. J. Physiol. 219:1568–1573 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faber, E.D., Oosting, R., Neefjes, J.J. et al. Distribution and Elimination of the Glycosidase Inhibitors 1-Deoxymannojirimycin and N-Methyl-1-Deoxynojirimycin in the Rat in Vivo . Pharm Res 9, 1442–1450 (1992). https://doi.org/10.1023/A:1015810913257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015810913257

Navigation