Skip to main content
Log in

Significance of Binding to Na,K-ATPase in the Tissue Distribution of Ouabain in Guinea Pigs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Ouabain binds specifically to Na,K-ATPase on the plasma membrane and therefore serves to measure the tissue concentration of Na,K-ATPase. We examined the role of ouabain binding to Na,K-ATPase in its overall tissue distribution. The tissue-to-plasma concentration ratio (K p,vivo) was defined in each tissue after intravenous administration of 3H-ouabain in guinea pigs, and specific binding of ouabain to Na,K-ATPase was measured in tissue homogenate to obtain the dissociation constant and binding capacity in each tissue. A predicted tissue-to-plasma concentration ratio (K p,vitro) was calculated using the obtained binding parameters and the volume of extracellular space in each tissue. The absolute values of K p,vitro were comparable to those of K p vivo, except in brain. Regression analysis showed that the specific binding capacity of Na,K-ATPase in each tissue is the main factor in the tissue variation of K p,vivo. Therefore, the binding of ouabain to Na,K-ATPase plays a significant role in the tissue distribution of ouabain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERNCES

  1. R. L. Dedrick and K. B. Bishoff. Pharmacokinetics in applications of the artificial kidney. Chem. Eng. Progr. Symp. Ser. 64:32–44 (1968).

    Google Scholar 

  2. K. B. Bishoff and R. L. Dedrick. Thiopental pharmacokinetics. J. Pharm. Sci. 57:1346–1351 (1968).

    Google Scholar 

  3. K. J. Himmelstein and R. J. Lutz. A review of the applications of physiologically based pharmacokinetic modeling. J. Pharmacokin. Biopharm. 7:127–145 (1979).

    Google Scholar 

  4. L. E. Gerlowski and R. K. Jain. Physiologically based pharmacokinetic modeling: Principles and applications. J. Pharm. Sci. 72:1103–1127 (1983).

    Google Scholar 

  5. R. L. Dedrick. Animal scale up. J. Pharmacokin. Biopharm. 1:435–461 (1973).

    Google Scholar 

  6. Y. Sawada, M. Hanano, Y. Sugiyama, H. Harashima, and T. Iga. Prediction of the volume of distribution of basic drugs in humans based on data from animals. J. Pharmacokin. Biopharm. 12:587–594 (1984).

    Google Scholar 

  7. T. Terasaki, T. Iga, Y. Sugiyama, and M. Hanano. Pharmacokinetic study on the mechanism of tissue distribution of doxorubicin: Interorgan and interspecies variation of tissue-to plasma partition coefficients in rats, rabbits and guinea pigs. J. Pharm. Sci. 73:1359–1363 (1984).

    Google Scholar 

  8. L. I. Harrison and M. Gibaldi. Pharmacokinetics of digoxin in the rat. Drug Metab. Disp. 4:88–93 (1976).

    Google Scholar 

  9. J. Sato, Y. Sawada, T. Iga, and M. Hanano. Effect of quinidine on digoxin distribution and elimination in guinea pigs. J. Pharm. Sci. 72:1137–1141 (1983).

    Google Scholar 

  10. D. J. Weidler, N. S. Jallad, H. S. Movahhed, E. Sakmar, and J. G. Wagner. Pharmacokinetics of digoxin in the cat and comparisons with man and the dog. Res. Comm. Chem. Pathol. Pharmacol. 19:57–66 (1978).

    Google Scholar 

  11. L. I. Harrison and M. Giboldi. Physiologically based pharmacokinetic model for digoxin distribution and elimination in the rat. J. Pharm. Sci. 66:1138–1142 (1977).

    Google Scholar 

  12. L. I. Harrison and M. Giboldi. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans. J. Pharm. Sci. 66:1679–1683 (1977).

    Google Scholar 

  13. O. Hansen. Interaction of cardiac glycosides with (Na+ + K+)-activated ATPase. A biochemical link to digitalis-induced inotropy. Pharmacol. Rev. 36:143–163 (1984).

    Google Scholar 

  14. K. Repke, M. Est, and H. J. Portius. Uber die ursache der speciesunterschied in der digitalisempfindlichkeit. Biochem. Pharmacol. 14:1785–1802 (1965).

    Google Scholar 

  15. T. Akera, S. I. Baskin, T. Tobin, and T. M. Brody. Ouabain: Temporal relationship between the inotropic effect and the in vitro binding to and dissociation from (Na+ + K+)-activated ATPase. Naunyn-Schmiedelberg Arch. Pharmacol. 277:151–162 (1973).

    Google Scholar 

  16. M. Y. Abeywardena, E. J. Mcmurchie, R. Gordon, and J. S. Charnock. Species variation in the ouabain sensitivity of cardiac Na+, K+-ATPase. Biochem. Pharmacol. 33:3649–3654 (1984).

    Google Scholar 

  17. H. Harashima, Y. Sugiyama, T. Iga, and M. Hanano. Nonlinear tissue distribution of ouabain in rabbits. Drug Metab. Disp. 16:645–649 (1988).

    Google Scholar 

  18. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn. 4:879–890 (1981).

    Google Scholar 

  19. M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.

    Google Scholar 

  20. A. Tsuji, T. Yoshikawa, K. Nishide, H. Minami, M. Kumura, E. Nakashima, T. Terasaki, E. Miyamoto, C. H. Nightingale, and T. Yamanaka. Physiologically based pharmacokinetic model for beta-lactam antibiotics I: Tissue distribution and elimination in rats. J. Pharm. Sci. 72:1239–1251 (1983).

    Google Scholar 

  21. E. F. Adolph. Quantitative relations in the physiological constitutions of mammals. Science 109:579–585 (1949).

    Google Scholar 

  22. J. Q. Russell and C. D. Klassen. Species variation in the billiary excretion of ouabain. J. Pharmacol. Exp. Ther. 183:513–519 (1972).

    Google Scholar 

  23. R. Selden and T. W. Smith. Ouabain pharmacokinetics in dog and man. Circulation 45:1176–1182 (1972).

    Google Scholar 

  24. P. O. Sjoquist, L. Bjellin, and A. M. Carter. Effect of a vasopressin analogue (N4-glycyl-glycyl-glycyl-(8-lysine)-vasopressin) on organ blood flow in the pregnant guinea pig. Acta Pharmacol. Toxicol. 40:369–377 (1977).

    Google Scholar 

  25. L. L. Peters, G. Grutters, and C. B. Martin, Jr. Distribution of cardiac output in the unstressed pregnant guinea pig. Am. J. Obstet. Gynecol. 138:1177–1184 (1980).

    Google Scholar 

  26. O. Hansen. The relationship between g-strophanthin-binding capacity and ATPase activity in plasma membrane fragment from ox brain. Biochim. Biophys. Acta 233:122–132 (1971).

    Google Scholar 

  27. P. L. Jorgensen and J. C. Skou. Purification and characterization of (Na+ + K+)-ATPase in preparations from the outer medulla of rabbit kidney. Biochim. Biophys. Acta 233:366–380 (1971).

    Google Scholar 

  28. T. Clausen and O. Hansen. Ouabain binding and Na+-K+ transport in rat muscle cells and adipocytes. Biochim. Biophys. Acta 345:387–404 (1974).

    Google Scholar 

  29. P. V. Sulakhe, M. Fedelesova, D. B. McNamara, and N. S. Dhalla. Isolation of skeletal muscle membrane fragments containing active Na+-K+ stimulated ATPase: Comparison of normal and dystrophic muscle sarcolemma. Biochem. Biophys. Res. Commun. 42:793–800 (1971).

    Google Scholar 

  30. Y. H. Lau, A. H. Brunschwig, and J. P. Brunschwig. Isolation of transverse tuble by fractionation of triad junctions of skeletal muscle. J. Biol. Chem. 252:5565–5574 (1977).

    Google Scholar 

  31. R. A. Sabbadini and V. R. Okamoto. The distribution of ATPase activities in purified transverse tubular membrane. Arch. Biochem. Biophys. 223:107–119 (1983).

    Google Scholar 

  32. K. Wierzba, Y. Sugiyama, K. Okudaira, T. Iga, and M. Hanano. Tubulin as a major determinant of tissue distribution of vincristine. J. Pharm. Sci. 76:872–875 (1987).

    Google Scholar 

  33. K. Wierzba, Y. Sugiyama, T. Iga, and M. Hanano. Kinetic study on the mechanism of tissue distribution of vinblastine. J. Pharmacobio-Dyn. 11:651–661 (1988).

    Google Scholar 

  34. N. Yata, T. Toyoda, T. Murakami, A. Nishiura, and Y. Higashi. Phosphatidylserine as a determinant for the tissue distribution of weakly basic drugs in rats. Pharm. Res. 7:1019–1025 (1990).

    Google Scholar 

  35. J. H. Lin, Y. Sugiyama, S. Awazu, and M. Hanano. In vitro and in vivo evaluation of the tissue to plasma partition coefficient for physiological pharmacokinetic models. J. Pharmacokin. Biopharm. 10:637–647 (1982).

    Google Scholar 

  36. G. Schuhumann, B. Fichtl, and H. Kurz. Prediction of drug distribution in vivo on the basis of in vitro binding data. Biopharm. Drug Dispos. 8:73–76 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harashima, H., Mamiya, M., Yamazaki, M. et al. Significance of Binding to Na,K-ATPase in the Tissue Distribution of Ouabain in Guinea Pigs. Pharm Res 9, 474–479 (1992). https://doi.org/10.1023/A:1015832127969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015832127969

Navigation