Skip to main content
Log in

An ex vivo angiogenesis assay utilizing commercial porcine carotidartery: Modification of the rat aortic ring assay

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The study of angiogenesis as a therapeutic target requires a reliable, physiologically relevant, and technically straightforward assay. An ex vivo assay bridges the gap between cell-based assays, which may not realistically represent the complex process of vessel sprouting, and in vivo assays, which are time consuming and expensive. Porcine carotid arteries provide an ideal tissue source for angiogenesis inhibitor screens due to their availability, physiological relevance and large size. 1.5 mm2 fragments of porcine carotid arteries were incubated in 48-well culture plates and sandwiched between two 100 μl layers of Matrigel. Sprouting was observed from the explants and quantitated, using a digital imaging system, after two weeks of incubation. Histological analysis using Factor VIII-related antigen (von Willebrand Factor) as an endothelial cell-specific marker identified these sprouts, which were consistent with endothelial cell morphology, supporting the system as a model of angiogenesis. Accordingly, the angiogenesis inhibitors suramin, 2-methoxyestradiol, and the matrix metalloprotease inhibitor Batimastat were shown to completely inhibit sprouting at 50, 0.5, and 5.0 μg/ml, respectively and to have ED50 values of 23, 0.15, and 0.14 μg/ml. This assay shows good reproducibility and eliminates animal to animal variation. The system should prove adaptable to other forms of angiogenic stimulation, ultimately making a variety of assays for angiogenesis available to laboratories of limited resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333: 1757-63.

    Article  PubMed  CAS  Google Scholar 

  2. Wamil AW, Wamil BD, Hellerqvist CG. CM101-mediated recovery of walking ability in adult mice paralyzed by spinal cord injury. Proc Natl Acad Sci USA 1998; 95: 13188-193.

    Article  PubMed  CAS  Google Scholar 

  3. Nagashima M, Yoshino S, Aono H et al. Inhibitory effects of anti-rheumatic drugs on vascular endothelial growth factor in cultured rheumatoid synovial cells. Clin Exp Immunol 1999; 116: 360-365.

    Article  PubMed  CAS  Google Scholar 

  4. Dhanabal M, Ramchandran R, Volk R et al. Endostatin: Yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res 1999; 59: 189-197.

    PubMed  CAS  Google Scholar 

  5. Xin X, Yang S, Kowalski J et al. Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 1999; 274: 9116-21.

    Article  PubMed  CAS  Google Scholar 

  6. Sheu JR, Fu CC, Tsai ML et al. Effect of U-995, a potent shark cartilage-derived angiogenesis inhibitor, on anti-angiogenesis and anti-tumor activities. Anticancer Res 1998; 18: 4435-41.

    PubMed  CAS  Google Scholar 

  7. Ausprunk DH, Knighton DR, Folkman J. Differentiation of vascular endothelium in the chick chorioallantois: A structural and autoradiographic study. Dev Biol 1974; 38: 237-48.

    Article  PubMed  CAS  Google Scholar 

  8. Gimbrone MA, Cotran RS, Leapman SB et al. Tumor growth neovascularization: An experimental model using rabbit cornea. J Natl Cancer Inst 1974; 52: 413-27.

    PubMed  Google Scholar 

  9. Nicosia RF, Tchao R, Leighton J. Histotypic angiogenesis in vitro: Light microscopic ultrastructural, and radioautographic studies. In Vitro 1982; 18: 538-49.

    PubMed  CAS  Google Scholar 

  10. Baatout S, Cheta N. Matrigel: A useful tool to study endothelial differentiation. Rev Roum Med Int 1996; 34: 263-69.

    CAS  Google Scholar 

  11. Brown KJ, Maynes SF, Bezos A et al. A novel in vitro assay for human angiogenesis. Lab Invest 1996; 75: 539-54.

    PubMed  CAS  Google Scholar 

  12. Jarmolych J, Daoud AS, Landau J et al. Aortic media explants-cell proliferation and production of mucopolysaccharides, collagen, and elastic tissue. Exp Mol Pathol 1968; 9: 171-88.

    Article  PubMed  CAS  Google Scholar 

  13. Nicocia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. Lab Invest 1990; 63: 115-122.

    Google Scholar 

  14. Merck & Co., Inc. Comparing Multiple Groups Guidance System Software, Version 2. Rahway, New Jersey: Merck & Co., Inc.

  15. Zaniboni A. Suramin: The discovery of an old anticancer drug. Med Oncol Tumor Pharmacother 1990; 7: 287-90.

    PubMed  CAS  Google Scholar 

  16. Fotsis T, Zhang Y, Pepper MS et al. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 1994; 368: 237-9.

    Article  PubMed  CAS  Google Scholar 

  17. Grams F, Crimmin M, Hinnes L et al. Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry 1995; 34: 14012-20.

    Article  PubMed  CAS  Google Scholar 

  18. Nicosia RF, Ottinetti A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: A comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 1990; 26: 119-28.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiffey-Wilusz, J., Boice, J.A., Ronan, J. et al. An ex vivo angiogenesis assay utilizing commercial porcine carotidartery: Modification of the rat aortic ring assay. Angiogenesis 4, 3–9 (2001). https://doi.org/10.1023/A:1016604327305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016604327305

Navigation