Skip to main content
Log in

Dealing with linear dependence during the iterations of the restarted block Lanczos methods

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The Lanczos method can be generalized to block form to compute multiple eigenvalues without the need of any deflation techniques. The block Lanczos method reduces a general sparse symmetric matrix to a block tridiagonal matrix via a Gram–Schmidt process. During the iterations of the block Lanczos method an off-diagonal block of the block tridiagonal matrix may become singular, implying that the new set of Lanczos vectors are linearly dependent on the previously generated vectors. Unlike the single vector Lanczos method, this occurrence of linearly dependent vectors may not imply an invariant subspace has been computed. This difficulty of a singular off-diagonal block is easily overcome in non-restarted block Lanczos methods, see [12,30]. The same schemes applied in non-restarted block Lanczos methods can also be applied in restarted block Lanczos methods. This allows the largest possible subspace to be built before restarting. However, in some cases a modification of the restart vectors is required or a singular block will continue to reoccur. In this paper we examine the different schemes mentioned in [12,30] for overcoming a singular block for the restarted block Lanczos methods, namely the restarted method reported in [12] and the Implicitly Restarted Block Lanczos (IRBL) method developed by Baglama et al. [3]. Numerical examples are presented to illustrate the different strategies discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Baglama, D. Calvetti and L. Reichel, Iterative methods for the computation of a few eigenvalues of a large symmetric matrix, BIT 36 (1996) 400–421.

    Google Scholar 

  2. J. Baglama, D. Calvetti and L. Reichel, Fast Leja points, Electronic Trans. Numer. Anal. 7 (1998) 124–140.

    Google Scholar 

  3. J. Baglama, D. Calvetti, L. Reichel and A. Ruttan, Computation of a few close eigenvalues of a large matrix with application to liquid crystal modeling, J. Comput. Phys. 146 (1998) 203–226.

    Google Scholar 

  4. M.W. Berry, A survey of public domain Lanczos-based software, in: Proc. of the Cornelius Lanczos Internat. Centenary Conference (SIAM, 1994) pp. 332–334.

  5. Å. Björck, Numerics of Gram-Schmidt orthogonalization, Linear Algebra Appl. 197/198 (1994) 297–316.

    Google Scholar 

  6. D. Calvetti, L. Reichel and D.C. Sorensen, An implicitly restarted Lanczos method for large symmetric eigenvalue problems, Electronic Trans. Numer. Anal. 2 (1994) 1–21.

    Google Scholar 

  7. F. Chatelin, Eigenvalues of Matrices (Wiley, Chichester, 1993).

    Google Scholar 

  8. J. Cullum and W.E. Donath, A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace for large, sparse symmetric matrices, in: Proc. of the 1974 IEEE Conf. on Decision and Control, New York, 1974, pp. 505–509.

  9. J. Cullum and R.A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1 (Birkhäuser, Boston, 1985).

    Google Scholar 

  10. J.J. Dongarra, J. DuCroz, I.F. Duff and S. Hammarling, A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Software 16 (1990) 1–17.

    Google Scholar 

  11. R.W. Freund, Templates for band Lanczos methods and for the complex symmetric Lanczos method, Numerical Analysis Manuscript No. 99–3–01, Bell Laboratories (January 1999).

  12. G.H. Golub and R. Underwood, The block Lanczos method for computing eigenvalues, in: Mathematical Software, Vol. III, ed. J.R. Rice (Academic Press, New York, 1977) pp. 361–377.

    Google Scholar 

  13. G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd ed. (Johns Hopkins Univ. Press, Baltimore, MD, 1989).

    Google Scholar 

  14. R.G. Grimes, J.L. Lewis and H.D. Simon, A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal. 15 (1994) 228–272.

    Google Scholar 

  15. W. Karush, An iterative method for finding characteristic vectors of a symmetric matrix, Pacific J. Math. 1 (1951) 233–248.

    Google Scholar 

  16. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, National Bureau of Standards 45 (1950) 225–282.

    Google Scholar 

  17. R.B. Lehoucq, Analysis and implementation of an implicitly restarted Arnoldi iteration, Ph.D. thesis, Rice University, Houston (1995).

    Google Scholar 

  18. R.B. Lehoucq, S.K. Gray, D.H. Zhang and J.C. Light, Vibrational eigenstates of four-atom molecules: A parallel strategy employing the implicitly restarted Lanczos method, Comput. Phys. Comm. 109 (1998) 15–26.

    Google Scholar 

  19. R.B. Lehoucq and K.J. Maschhoff, Block Arnoldi Method, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, eds. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. Van der Vorst, SIAM, to be published.

  20. R.B. Lehoucq and D.C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl. 17 (1996) 789–821.

    Google Scholar 

  21. R.B. Lehoucq, D.C. Sorensen, P.A. Vu and C. Wang, ARPACK: An implementation of an implicitly restarted Arnoldi method for computing some of the eigenvalues and eigenvectors of a large sparse matrix (1996), code available from Netlib in directory scalapack.

  22. O.A. Marques, BLZPACK: A Fortran 77 implementation of the block Lanczos algorithm, code available at http://www.nersc.gov/~osni/marques_soitware.html.

  23. R.B. Morgan and D.S. Scott, Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices, SIAM J. Sci. Statist. Comput. 7 (1986) 817–825.

    Google Scholar 

  24. C.C. Paige, Computational variants of the Lanczos method for the eigenproblem, J. Inst. Math. Appl. 10 (1972) 373–381.

    Google Scholar 

  25. B.N. Parlett, The rewards for maintaining semi-orthogonality among Lanczos vectors, Numer. Linear Algebra Appl. 1 (1992) 243–267.

    Google Scholar 

  26. B.N. Parlett, The Symmetric Eigenvalue Problem (SIAM, Philadelphia, PA, 1998).

    Google Scholar 

  27. B.N. Parlett and B. Nour-Omid, Towards a black box Lanczos program, Comput. Phys. Comm. 53 (1989) 169–179.

    Google Scholar 

  28. B.N. Parlett and D.S. Scott, The Lanczos algorithm with selective orthogonalization, Math. Comp. 33 (1979) 311–328.

    Google Scholar 

  29. L. Reichel and W.B. Gragg, Algorithm 686: FORTRAN subroutines for updating the QR decomposition of a matrix, ACM Trans. Math. Software 16 (1990) 369–377.

    Google Scholar 

  30. A. Ruhe, Implementation aspect of band Lanczos algorithms for computation of eigenvalues of large sparse symmetric matrices, Math. Comp. 33 (1979) 680–687.

    Google Scholar 

  31. Y. Saad, Numerical Methods for Large Eigenvalue Problems (Halstead Press, New York, 1992).

    Google Scholar 

  32. D.S. Scott, LASO2-FORTRAN implementation of the Lanczos process with selective orthogonalization, code and documentation available from Netlib.

  33. G.L.G. Sleijpen and H.A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (1996) 401–425.

    Google Scholar 

  34. D.C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl. 13 (1992) 357–385.

    Google Scholar 

  35. K. Wu and H. Simon, Thick-restart Lanczos method for symmetric eigenvalue problems, LBNL Report 41412 (1998).

  36. Q. Ye, An adaptive block Lanczos algorithm, Numer. Algorithms 12 (1996) 97–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baglama, J. Dealing with linear dependence during the iterations of the restarted block Lanczos methods. Numerical Algorithms 25, 23–36 (2000). https://doi.org/10.1023/A:1016646115432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016646115432

Navigation