Skip to main content
Log in

In situ analysis of metal-oxide systems used for selective oxidation catalysis: how essential is chemical complexity?

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The mode of operation of selective oxidation reactions is described by a series of chemical rules defining the catalyst and some reaction intermediates. In contrast to catalytic processes over metallic elements, little is known, however, about the atomistic details of selective oxidation. In particular, the participation of the subsurface region of the catalyst in the kinetically relevant elementary steps (Mars–van Krevelen mechanism) is not positively verified. Using in situ X-ray absorption techniques to study binary and ternary molybdenum oxides the present contribution shows that it is possible to tackle some of the problems in selective oxidation by direct experimental observation. The modification of the Mo–O local bonding interaction upon thermal reduction of MoO3to MoO3-x is illustrated. This was also found for mixed Mo–V oxides in which the chemical state of the vanadium seemed unaffected by the reaction but the surface Mo : V ratio varied substantially with the gas phase composition. It is further shown that the solid-state phase transformation between reduced and oxidised forms of molybdenum oxides occur so rapidly, that possibly relevant suboxide cannot be identified by ex situ phase analysis. Observation of the time-law of redox transformations showed that lattice oxygen is only available for selective oxidation if the associated solid-state transformation occurs in the kinetic regime of reaction control and not in that of diffusion control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Grasselli, Catal. Today 49 (1999) 141.

    Google Scholar 

  2. J. Haber and E. Lalik, Catal. Today 33 (1997) 119.

    Google Scholar 

  3. L.D. Krenzke and G.W. Keulks, J. Catal. 57 (1979) 331.

    Google Scholar 

  4. J.D. Burrington, C.T. Kartisek and R.K. Grasselli, J. Catal. 87 (1984) 363.

    Google Scholar 

  5. B. Grzybovska, J. Haber and J. Janas, J. Catal. 49 (1977) 150.

    Google Scholar 

  6. G. Mestl, Ch. Linsmeier, R. Gottschall, M. Dieterle, J. Find, D. Herein, J. Jäger, Y. Uchida and R. Schlögl, J.Mol. Catal. A 162 (2000) 455.

    Google Scholar 

  7. G.W. Coulston, G.W. Bare, H. Kung, K. Birkeland, G.K. Bethke, R. Harlow, N. Herron and P.L. Lee, Science 275 (1997) 191.

    PubMed  Google Scholar 

  8. R.K. Graselli, in: Adsorption and Catalysis on Oxide Surfaces, eds. M. Che and G.C. Bond (Elsevier, Amsterdam, 1985) p. 275.

    Google Scholar 

  9. F. Trifirò, Catal. Today 16 (1993) 91.

    Google Scholar 

  10. D. Carson, G. Coudurier, M. Forissier and J.C. Védrine, J. Chem. Soc. Faraday Trans. 79 (1983) 1921.

    Google Scholar 

  11. J.F. Brazdil, L.C. Glaeser and R.K. Grasselli, J. Phys. Chem. 87 (1983) 5485.

    Google Scholar 

  12. B. Irigoyen, A. Juan and N. Castellani, J. Catal. 190 (2000) 14.

    Google Scholar 

  13. S.K. Bej and M.S. Rao, Ind. Eng. Chem. J. 31 (1992) 2075.

    Google Scholar 

  14. J.N. Allison and W.A. Goddard III, in: Solid State Chemistry in Catalysis, Symp. Series, Vol. 279, eds. R.K. Grasselli and J.F. Brazdil (Am. Chem. Soc., Washington, DC, 1985) p. 23.

    Google Scholar 

  15. R. Madix, Surface Reactions(Springer, Berlin, 1994).

    Google Scholar 

  16. E. Bordes and P. Courtine, Topics Catal. 11/12 (2000) 61.

    Google Scholar 

  17. A. Böttcher, H. Conrad and H. Niehus, J. Chem. Phys. 112 (2000) 4779.

    Google Scholar 

  18. X.G. Wang, W. Weiss, Sh. Shaikhutdinov, M. Ritter, M. Petersen, F. Wagner, R. Schlögl and M. Scheffler, Phys. Rev. Lett. 81 (1998) 1038.

    Google Scholar 

  19. S. Surnev, L. Vitali, M.G. Ramsey and F.P. Netzer, Phys. Rev. B 61 (2000) 13945.

    Google Scholar 

  20. H.J. Freund, Ber. Bunsenges. Phys. Chem. 99 (1995) 1261.

    Google Scholar 

  21. M. Bäumer and H.J. Freund, Progress Surf. Sci. 61 (1999) 127.

    Google Scholar 

  22. A. Kämper, A. Auroux and M. Baerns, Phys. Chem. Chem. Phys. 2 (2000) 1069.

    Google Scholar 

  23. K. Brückmann, R. Grabowski, J. Haber, A. Mazurkiewicz, J. Slocynski and T. Wiltowski, J. Catal. 104 (1987) 71.

    Google Scholar 

  24. A. Bielanki and J. Haber, Oxygen in Catalysis(Dekker, New York, 1991) p. 121.

    Google Scholar 

  25. K. Hermann, M. Witko, R. Druncinc and R. Tokarz, Topics Catal. 11/12 (2000) 67.

    Google Scholar 

  26. M. Witko, K. Herrmann and M. Tokarz, J. Electron Spectr. Relat. Phenomen. 69 (1994) 89.

    Google Scholar 

  27. P.L.J. Gunter, J.W. Niemandsverdriet, F. Ribeiro and G.A. Somorjai, Catal. Rev. Sci. Eng. 39 (1997) 77.

    Google Scholar 

  28. R.B. Bjorklund and I. Lundstom, J. Catal. 79 (1983) 314.

    Google Scholar 

  29. L.E. Firment and A. Ferretti, Surf. Sci. 129 (1983) 155.

    Google Scholar 

  30. G. Mestl, P. Ruiz, B. Delmon and H. Knözinger, J. Phys. Chem. 98 (1994) 11269.

    Google Scholar 

  31. M. Hävecker, A. Knop-Gericke and Th. Schedel-Niedrig, Appl. Surf. Sci. 142 (1999) 438.

    Google Scholar 

  32. A. Knop-Gericke, M. Hävecker, Th. Schedel-Niedrig and R. Schlögl, Catal. Lett. 66 (2000) 215.

    Google Scholar 

  33. J.S. Chung, R. Miranda and C.O. Bennett, J. Catal. 114 (1988) 398.

    Google Scholar 

  34. B. Grzybovska-Swierkosz, Topics Catal. 11/12 (2000) 23.

    Google Scholar 

  35. T. Ressler, O. Timpe, T. Neisius, J. Find, G. Mestl, M. Dieterle and R. Schlögl, J. Catal. 191 (2000) 75.

    Google Scholar 

  36. P. Mars and D.W. van Krevelen, Chem. Eng. Sci. 3 (1954) 41.

    Google Scholar 

  37. C. Courson, B. Taouk and E. Bordes, Catal. Lett. 66 (2000) 129.

    Google Scholar 

  38. L. Kihlborg, Arkiv Kemi 21 (1963) 471.

    Google Scholar 

  39. P.L. Gai, W. Thoeni and P.B. Hirsch, J. Less Common Met. 54 (1979) 263.

    Google Scholar 

  40. N.N. Greenwwod, Ionic Crystals, Lattice Defects and Nonstoichiometry(Butterworth, London, 1963); T. Ressler, J. Wienold, R.E. Jentoft, O. Timpe and T. Neisius, Solid State Commun., in press.

    Google Scholar 

  41. L. Kihlborg, Arkiv Kemi 21 (1963) 427.

    Google Scholar 

  42. P.L. Gai, Topics Catal. 8 (1999) 97.

    Google Scholar 

  43. H. Werner, O. Timpe, D. Herein, Y. Uchida, N. Pfänder, U. Wild, R. Schlögl and H. Hibst, Catal. Lett. 44 (1997) 153.

    Google Scholar 

  44. T.V. Andrushkevich, Catal. Rev. Sci. Eng. 35 (1993) 213.

    Google Scholar 

  45. S. Breiter, M. Estenfelder, H.G. Lintz, A. Tenten and H. Hibst, Appl. Catal. A 134 (1996) 81.

    Google Scholar 

  46. L. Kihlborg, Acta Chem. Scand. 13 (1959) 954.

    Google Scholar 

  47. J.S. Chung and C.S. Bennett, in: Adsorption and Catalysis on Oxide Surfaces, eds. M. Che and G.C. Bond (Elsevier, Amsterdam, 1985) p. 185.

    Google Scholar 

  48. T. Ressler, R.E. Jentoft, J. Wienold, M.M. Günter and O. Timpe, J. Phys. Chem. B 104 (2000) 6360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlögl, R., Knop-Gericke, A., Hävecker, M. et al. In situ analysis of metal-oxide systems used for selective oxidation catalysis: how essential is chemical complexity?. Topics in Catalysis 15, 219–228 (2001). https://doi.org/10.1023/A:1016696400146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016696400146

Navigation