Skip to main content
Log in

Biotechnology and aquaculture of rotifers

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biotechnology can be defined as any technology that involves living organisms or their derivatives. In applying this definition to rotifers, we focus on their contribution in culturing of early larval stages of marine fish. After almost four decades of marine fish culture in captivity, the success of this worldwide industry is still quite dependent on mass culture of the species Brachionus plicatilis and B. rotundiformis. In mass culture, the rotifers are continuously driven to reproduce at high rates, in relatively extreme environmental conditions of high population density and high loads of organic matter. Therefore, the success of mass cultures and future improvements in these systems relies on a close interaction between basic and applied studies of rotifers. In the present review, we will attempt to analyze why rotifers are suitable for early life stages of fish and to describe, in general, methodologies that have been devised for reliable supply of rotifers in large quantities. Problems associated with rotifer production, nutritional quality and effect on fish health and nutrition, will be discussed. Research on B. plicatilis and B. rotundiformis has increased enormously during the past three decades and these two species are the best-studied rotifers so far. While much of the research on these species is directed or devoted to the needs of aquaculture industry, they are also used as models for addressing basic biological questions, due to the relative ease of culture and their availability. Studies on feeding, pheromones, speciation in rotifers, the occurrence and putative hormones involved in sexual and asexual reproduction and production of resting eggs, are few examples of such studies. Rotifers will probably maintain their role as food organism for fish larvae, in spite of attempts to replace them with more accessible formulated food. Development of new culture methods that will improve the nutritional quality and production efficiency of rotifers may result in more diversified and flexible tasks for these organisms in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, S. & A. Hino, 1996. Nitrogen flow in a chemostat culture of the rotifer Brachionus plicatilis. Fish. Sci. 62: 8–14.

    Google Scholar 

  • Balompapueng, M. D., A. Hagiwara, A. Nishi, K. Imaizumi & K. Hirayama, 1997a. Resting egg formation of the rotifer Brachionus plicatilis using a semi-continuous culture method. Fish. Sci. 63: 236–241.

    Google Scholar 

  • Balompapueng, M. D., A. Hagiwara, Y. Nozaki & K. Hirayama, 1997b. Preservation of resting eggs of the euryhaline rotifer Brachionus plicatilis O. F. Muller by canning. Hydrobiologia 358: 163–166.

    Google Scholar 

  • Baragi, V. & R. T. Lowell, 1986. Digestive enzyme activity in striped bass from first feeding through larval development. Trans. am. Fish. Soc. 115: 478–484.

    Google Scholar 

  • Bessonart, M., M. S. Izquierdo, M. Salhi, C. M. Hernandez-Cruz, M. M. Gonzalez & H. Fernandez-Palacios, 1999. Effect of dietary arachidonic acid levels on growth and survival of gilthead seabream (Sparus aurata L. ) larvae. Aquaculture 179: 265–275.

    Google Scholar 

  • Blanch, A. R., M. Simo, J. T. Jofre & G. Minkoff, 1991. Bacteria associated with hatchery cultivated turbot: are they implicated in rearing success? In Lavens P, P. Sorgeloos, E. Jaspers & F. Ollevier (eds), Larvi’ 91 - Fish and Crustacean Larviculture Symposium, Eur. Aquacult. Soc. Spec. Publ. 15, Gent (Belgium): 392–394.

  • Blaxter, J. H. S., 1974. The Early life History of Fish. Springer-Verlag Berlin Heidleberg New York: 765pp.

    Google Scholar 

  • Boehm, E. W., O. Gibson & E. Lubzens, 2000. Caharacterization of sattelite DNA sequences from commercially important marine rotifers Brachionus plicatilis and Brachionus rotundiformis. Mar. Biotechnol. 2: 38–48.

    Google Scholar 

  • Bower, C. E. & J. P. Bidwell, 1978. Ionization of ammonia in seawater: effect of temperature, pH and salinity. J. Fish. Res. B. Can. 35: 1012–1016.

    Google Scholar 

  • Cahu, C. L. & J. L. Zambonino Infante, 1994. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp. Biochem. Physiol. 109A: 213–222.

    Google Scholar 

  • Cochrane, B. J., R. B. Irby & T. W. Snell, 1991. Effects of copper and tributylin on stress protein abundance in the rotifer Brachionus plicatilis. Comp. Biochem. Physiol. 98C: 383–390.

    Google Scholar 

  • Colorni, A., O. Zmora & E. S. Kutin, 1991. Systematic infection in the rotifer Brachionus plicatilis by an invasive yeast. Bull. Eur. Ass. Fish Path. 11: 116–117.

    Google Scholar 

  • Comps, M. & B. Menu, 1997. Infectious diseases affecting mass production of the marine rotifer Brachionus plicatilis. Hydrobiologia 358: 179–183.

    Google Scholar 

  • Comps, M., B. Menu & V. Moreau, 1993. Massive infections with fungus of the rotifer Brachionus plicatilis. Bull. eur. Ass. Fish Pathol. 13: 28–29.

    Google Scholar 

  • Comps, M., J. Mari, F. Poisson & J. R. Bonami, 1991a. Biophysical and biochemical properties of an unusual birnavirus pathogenic for rotifers. J. Gen. Virol. 72: 1229–1236.

    Google Scholar 

  • Comps, M., B. Menu, G. Breuil & J. R. Bonami, 1991b. Viral infection associated with rotifer mortalities in mass culture. Aquaculture 93: 1–7.

    Google Scholar 

  • Dabrowski, K., 1979. The role of proteolytic enzymes in fish digestion. In Styczynska-Jurewicz, E., T. Backiel, E. Jaspers & J. Persoone (eds), Cultivation of Fish Fry and its Live Food. Eur. Maricult. Soc., Spec. Publ. 4, Bredene (Belgium): 107–126.

  • Dabrowski, K., 1984. The feeding of fish larvae: present 'state of the art’ and perspectives. Reprod. Nutr. Develop. 24: 807–833.

    Google Scholar 

  • Dabrowski, K. & J. H. Blom, 1994. Ascorbic acid deposition in rainbow trout (Oncorhynchus mykiss) eggs and survival of embryos. Comp. Biochem. Physiol. 108A: 129–135.

    Google Scholar 

  • Dabrowski, K. & A. Ciereszko, 1993. Influence of fish size, origin, and stress on ascorbate concentration in vital tissues of hatchery rainbow trout. Prog. Fish Cult. 55: 109–135.

    Google Scholar 

  • Diaz, M., F. J. Moyano, F. L. Garcia-Carreno, F. J. Alarcon & M. C. Sarasquete, 1997. Substrate-SDS-PAGE determination of protease activity through larval development in sea bream. Aquaculture Int. 5: 461–471.

    Google Scholar 

  • Estevez, A., L. A. McEvoy, J. G. Bell & J. R. Sargent, 1999. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in Arachidonic and Eicosapentaenoic acids. Aquaculture 180: 321–343.

    Google Scholar 

  • F.A.O., 1998. The state of world fisheries and aquaculture. Food and Agricultural Organization of the United Nations, Rome: www. FAO.org.

    Google Scholar 

  • Federation of European Aquaculture Producers, 2000. Mediterranean marine species juveniles: www. feap.org.

  • Fernandez-Reiriz, U. Labarta & M. J. Ferreiro, 1993. Effects of commercial enrichment diets on the nutritional value of the rotifer (Brachionus plicatilis). Aquaculture 112: 195–206.

    Google Scholar 

  • Fjelheim, A. J., P. Markidis, J. Skjermo & O. Vadstein, 1999. Rotifers (Brachionus plicatilis) as vector for probiotic to turbot larvae (Scophthalmus maximus). In Towards predictable quality, Aquaculture Europe, EAS Special publication No. 27: 60–61.

  • Frolov, A. V. & S. L. Pankov, 1992. The effect of starvation on the biochemical composition of the rotifer Brachionus plicatilis. J. mar. biol. Ass. U. K. 72: 343–356.

    Google Scholar 

  • Frolov, A. V., S. L. Pankov, K. N. Geradz, S. A. Pankova & L. V. Spektrova, 1991. Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture 97: 181–202.

    Google Scholar 

  • Fu, Y., K. Hirayama & Y. Natsukari, 1990. Strains of the rotifer Brachionus plicatilis having particular patterns of isozymes. In Hirano R. & I. Hanyu (eds), The Second Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippines: 37–40.

  • Fu, Y., K. Hirayama & Y. Natsukari, 1991a. Morphological differences between the two types of the rotifer Brachionus plicatilis O. F. Muller. J. exp. mar. Biol. Ecol. 151: 29–41.

    Google Scholar 

  • Fu, Y., K. Hirayama & Y. Natsukari, 1991b. Genetic divergence between S and L type stains of the rotifer Brachionus plicatilis O. F. Muller. J. exp. mar. Biol. Ecol. 151: 43–56.

    Google Scholar 

  • Fu, Y., A. Hada, T. Yamashita, Y. Yoshida & A. Hino, 1997. Development of a continuous culture system for stable mass production of the marine rotifer Brachionus. Hydrobiologia 358: 145–151.

    Google Scholar 

  • Fujita, S., 1979. Culture of red sea bream Pagrus major, and its food. In Styczynska-Jurewicz, E., T. Backiel, E. Jaspers & J. Persoone (eds), Cultivation of Fish Fry and its Live Food. Eur. Maricult. Soc., Spec. Publ. 4, Bredene (Belgium): 183–197.

  • Fukusho, K., 1989a. Biology and mass production of the rotifer Brachionus plicatilis (1). Int. J. Aquacult. Fish. Technol. 1: 232–240.

    Google Scholar 

  • Fukusho, K., 1989b. Biology and mass production of the rotifer Brachionus plicatilis (2). Int. J. Aquacult. Fish. Technol. 1: 292–299.

    Google Scholar 

  • Fulks, F. & K. L. Main, 1991. Rotifer and microalgae culture systems. Rotifer and Microalgae Culture Systems, Proc. U.S.- Asia Workshop. The Oceanic Insitute, Honolulu, HI: 364 pp.

    Google Scholar 

  • Furukawa, I. & K. Hidaka, 1973. Technical problems encountered in mass culture of rotifer using marine yeast as food organisms. Bull. Plank. Soc. Jpn. 20: 61–71.

    Google Scholar 

  • Gallardo, W. G., A. Hagiwara, Y. Tomita & T. W. Snell, 1999. Effect of growth hormone and ã-aminobutyric acid on Brachionus plicatilis (Rotifera) reproduction at low food or high ammonia levels. J. exp. mar. Biol. Ecol. 240: 179–191.

    Google Scholar 

  • Gallardo, W. G., A. Hagiwara, Y. Tomita, K. Soyano & T. W. Snell, 1997. Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production and body size of the marine rotifer Brachionus plicatilis Muller. Hydrobiologia 358: 113–120.

    Google Scholar 

  • Gatesoupe, F. J., 1990. The continuous feeding of turbot larvae, Scophthalmus maximus, and the control of the bacterial environment of rotifers. Aquaculture, 89: 139–148.

    Google Scholar 

  • Gatesoupe, F. J., 1991. The effect of three strains of lactic bacteria on the production rate of rotifers, Brachionus plicatilis, and their dietary value for larval turbot, Scophthalmus maximus. Aquaculture 96: 335–342.

    Google Scholar 

  • Gatesoupe, F. J., 1993. Bacillus sp. spores as food additive for the rotifer Brachionus plicatilis: improvement of their bacterial environment and their dietary value for larval turbot Scophthalmus maximus L. In Kaushik, S. J., P. Luquet (eds), Fish Nutrition in Practice. Institut National de la Recherche Agronomique, Paris, France, Les Colloques, Vol. 61: 561–568.

    Google Scholar 

  • Gatesoupe, F. J., 1999. The use of probiotics in aquaculture. Aquaculture 180: 147–165.

    Google Scholar 

  • Gomez, A., C. Clabby & G. R. Carvalho, 1998. Isolation and characterization of microsatellite loci in a cyclically parthenogenetic rotifer, Brachionus plicatilis. Mol. Ecol. 7: 1613–1621.

    Google Scholar 

  • Gomez, A. & G. R. Carvalho, 2000. Sex, parthogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populations. Mol. Ecol. 9: 203–214.

    Google Scholar 

  • Govoni, J. J., G. W. Boehlert & Y. Watanabe, 1986. The physiology of digestion in fish larvae. Envir. Bio. Fishes 16: 59–77.

    Google Scholar 

  • Grisez, L., J. Reyniers, L. Verdonck, J. Swings & F. Ollevier, 1997. Dominant intestinal microflora of sea bream and sea bass larvae, from two hatcheries, during larval development. Aquaculture 155: 387–399.

    Google Scholar 

  • Hadani, A, S. Beddig & E. Lubzens, 1992. Factors affecting survival of cryopreserved rotifers (Brachionus plicatilis O. F. Müller). In Moav, B., V. Hilge & H. Rosenthal (eds), Progress in Aquaculture Research. Eur. Aquacult. Soc. Spec. Publ. 17, Oostende (Belgium): 253–267.

  • Hagiwara, A., 1994. Practical use of rotifer cysts. Israel J. Aquaculture-Bamidgeh 46: 13–21.

    Google Scholar 

  • Hagiwara, A., 1996. Appearance of floating resting eggs in the rotifers Brachionus plicatilis and B. rotundiformis. Bull. Fac. Fish. Nagasaki University 77: 111–115.

    Google Scholar 

  • Hagiwara, A. & A. Hino, 1989. Effect of incubation and preservation on resting egg hatching and mixis in the derived clones of the rotifer Brachionus plicatilis. Hydrobiologia 186/187: 415–421.

    Google Scholar 

  • Hagiwara, A. & A. Hino, 1990. Feeding history and hatching of resting eggs in the marine rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 56: 1965–1971.

    Google Scholar 

  • Hagiwara, A. & K. Hirayama, 1993. Preservation of rotifers and its application in the finfish hatchery. In Lee, C.-S., M. S. Su & I. Liao (eds), Proc. Finfish Hatchery in Asia’ 91. TLM Conference Proceedings, Tungkang Marine Laboratory, Taiwan Fisheries research Institute, Tungkang, Taiwan 3: 61–71.

  • Hagiwara, A. & C.-S. Lee, 1991. Resting egg formation of the L-and S-type rotifer Brachionus plicatilis under different water temperature. Nippon Suisan Gakkaishi 57: 1645–1650.

    Google Scholar 

  • Hagiwara, A., A. Hino & R. Hirano, 1985. Combined effects of environmental conditions on the hatching of fertilized eggs of the rotifer Brachionus plicatilis collected from an outdoor pond. Bull. Jap. Soc. Sci. Fich. 51: 755–758.

    Google Scholar 

  • Hagiwara, A., A. Hino & R. Hirano, 1988a. Effects of temperature and chlorinity on resting egg formation in the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi. 54: 569–575.

    Google Scholar 

  • Hagiwara, A., A. Hino & R. Hirano, 1988b. Comparison of resting egg formation among five Japanese stocks of the rotifer Brachionus plicatilis. Nippo Suisan Gakkaishi 54: 577–580.

    Google Scholar 

  • Hagiwara, A., N. Yamamiya & A. Belem De Araujo, 1998. Effect of water viscosity on the population growth of the rotifer Brachionus plicatilis Muller. Hydrobiologia 387/388: 489–494.

    Google Scholar 

  • Hagiwara, A., M. D. Balompapueng, N. Munuswamy & K. Hirayama, 1997. Mass production and preservation of the resting eggs of the euryhaline rotifer Brachionus plicatilis and B. rotundiformis. Aquaculture 155: 223–230.

    Google Scholar 

  • Hagiwara, A., K. Hamada, S. Hori & K. Hirayama, 1994. Increased sexual reproduction in Brachionus plicatilis with the addition of bacteria and rotifer extracts. J. exp. mar. Biol. Ecol. 181: 1–8.

    Google Scholar 

  • Hagiwara, A., M.-M. Jung, T. Sato & K. Hirayama, 1995a. Interspecific relations between marine rotifer Brachionus rotundiformis and zooplankton species contaminating in the rotifer mass culture tank. Fish. Sci. 61: 623–627.

    Google Scholar 

  • Hagiwara, A., C.-S. Lee, G. Miyamoto & H. Hino, 1989 Resting egg formation and hatching of the S-type rotifer Brachionus plicatilis at varying salinities. Mar. Biol. 103: 327–332.

    Google Scholar 

  • Hagiwara, A., K. Hamada, A. Nishi, K. Imaizumi & K. Hirayama, 1993a. Mass production of rotifer Brachionus plicatilis resting eggs in 50 m3 tanks. Nippon Suisan Gakkaishi 59: 93–98.

    Google Scholar 

  • Hagiwara, A. K. Hamada, A. Nishi, K. Imaizumi & K. Hirayama, 1993b. Dietary value of neonates from rotifer Brachionus plicatilis resting eggs for red sea bream larvae. Nippon Suisan Gakkaishi 59: 99–104.

    Google Scholar 

  • Hagiwara A., T. Kotani, T. W. Snell, M. Assava-Aree & K. Hirayama, 1995b. Morphology, reproduction, genetics and mating behavior of small, tropical marine Brachionus strains (Rotifera). J. exp. mar. Biol. Ecol. 194: 25–37.

    Google Scholar 

  • Hagiwara, A., N. Nishi, F. Kawahara, K. Tominaga & K. Hirayama, 1995c. Resting eggs of the marine rotifer Brachionus plicatilis Muller: development and effect of irradiation on hatching. Hydrobiologia 313/314: 223–229.

    Google Scholar 

  • Hamada, K., A. Hagiwara & K. Hirayama, 1993. Use of preserved diets for rotifer Brachionus plicatilis resting egg formation. Nippon Suisan Gakkaishi 59: 85–91.

    Google Scholar 

  • Hansen, B., T. Wernberg-Moller & L. Wittrup, 1997. Particle grazing efficiency and specific growth of the rotifer Brachionus plicatilis (Muller). J. exp. mar. Biol. Ecol. 215: 217–233.

    Google Scholar 

  • Hino, A. & R. Hirano, 1976. Ecological studies on the mechanism of bisexual reproduction in the rotifer Brachionus plicatilis-I. General aspects of bisexual reproduction inducing factors. Bull. Jap. Soc. Sci. Fish. 42: 1093–1099.

    Google Scholar 

  • Hino, A. & R. Hirano, 1977. Ecological studies on the mechanism of bisexual reproduction in the rotifer Brachionus plicatilis-II. Effect of cumulative parthogenetic generation on the frequency of bisexual reproduction. Bull. Jap. Soc. Sci. Fish. 43: 1147–1155.

    Google Scholar 

  • Hino, A. & R. Hirano, 1984. Relationship between water temperature and bisexual reproduction in the rotifer Bachionus plicatilis. Nippon Suisan Gakkaishi 50: 1481–1485.

    Google Scholar 

  • Hino, A. & R. Hirano, 1985. Relationship between the temperature given at the time of fertilized egg formation and bisexual reproduction pattern in the deriving strain of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 51: 511–514.

    Google Scholar 

  • Hino, A. & R. Hirano, 1988. Relationship between water chlorinity and bisexual reproduction rate in the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 54: 1139–1332.

    Google Scholar 

  • Hino, A., S. Aoki & M. Ushiro, 1997. Nitroggen-flow in the rotifer Brachionus rotundiformis and its significance in mass cultures. Hydrobiologia 358: 77–82.

    Google Scholar 

  • Hirata, H., 1964. Cultivation of live food organisms at the Yashima Station. Saibai-Gyogyo: 2-4, 4 (in Japanese).

    Google Scholar 

  • Hirata, H., 1979. Rotifer culture in Japan. In Styczynska-Jurewicz, E., T. Backiel, E. Jaspers & J. Persoone (eds), Cultivation of Fish Fry and its Live Food. Eur. Maricult. Soc., Spec.l Publ. 4, Bredene (Belgium): 361–375.

  • Hirata, H., 1980. Culture methods of the marine rotifer Brachionus plicatilis. Min. Rev. Data File Res. 1: 27–46.

    Google Scholar 

  • Hirata, H. & Y. Mori, 1967. Mass culture of the marine rotifer fed baker's yeast. Saibai Gyogyo 5: 36–40.

    Google Scholar 

  • Hirayama, K., 1987. A consideration why mass culture of the rotifer Brachionus plicatilis with baker's yeast is unstable. Hydrobiologia 147: 269–270.

    Google Scholar 

  • Hirayama, K., 1990. A physiological approach to problems of mass culture of the rotifer. NOAA Technical report No. NMFS 85. U.S. Dept. Commerce, U.S.A.: 73–79.

    Google Scholar 

  • Hirayama, K. & H. Funamoto, 1983. Supplementary effect of several nutrients on nutritive deficiency of baker's yeast of population growth of the rotifer Brachionus plicatilis. Bull. Jpn. Soc. Sci. Fish. 49: 505–510.

    Google Scholar 

  • Hirayama, K. & K. Nakamura, 1976. Fundamental studies on the physiology of rotifers in mass culture-V. Dry Chlorella powder as a food for rotifers. Aquaculture 8: 301–307.

    Google Scholar 

  • Hirayama K. & I. F. M. Rumengan, 1993. The fecundity patterns of S and L type rotifers of Brachionus plicatilis. Hydrobiologia 255/256: 153–157.

    Google Scholar 

  • Ito, T., 1960. On the culture of the mixohaline rotifer Brachionus plicatilis O. F.Muller, in sea water. Rep. Fac. Fish. Perfect. Univ. Mie 3: 708–740.

    Google Scholar 

  • James, C. M., & T. Abu-Rezq, 1989a. Intensive rotifer cultures using chemostats. Hydrobiologia 186/187: 423–430.

    Google Scholar 

  • James, C. M., & T. Abu-Rezq, 1989b. An intensive chemostats culture system for the production of rotifers for aquaculture. Aquaculture 81: 291–301.

    Google Scholar 

  • James, C. M., & T. Abu-Rezq, 1990. Efficiency of rotifer chemostats in relation to salinity regimes for producing rotifers for aquaculture. J. Aqua. Trop. 5: 103–116.

    Google Scholar 

  • James, C. M., P. A. Dias & A. E. Salman, 1987. The use of marine yeast (Candida sp.) and bakers yeast (Saccharomyces cerevisiae) in combination with Chlorella sp. for mass culture of the rotifer Brachionus plicatilis. Hydrobiologia 147: 263–268.

    Google Scholar 

  • James, C. M., M. Bou-Abbas, A. M. Al-Khars, S. Al-Hinty & A. E. Salman, 1983. Production of the rotifer Brachionus plicatilis for aquaculture in Kuwait. Hydrobiologia 104: 77–84.

    Google Scholar 

  • Jung, M.-M., A. Hagiwara & K. Hirayama, 1997. Interspecific interactions in the marine rotifer microcosm. 358: 121–126.

    Google Scholar 

  • Kinne, O., 1977. Cultivation of animals. In Kinne, O., (ed.), Marine Ecology. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Vol. III. Part 2: 968–1004.

    Google Scholar 

  • Kogane, T., A. Hagiwara & K. Imaizumi, 1997. Temperature conditions enhancing resting egg production of the euryhaline rotifer Brachionus plicatilis O. F. Muller (Kamiura strain). Hydrobiologia 358: 167–171.

    Google Scholar 

  • Kolkovski, S. & A. Tandler, 1995. Why microdiets are still inadequate as aviable alternative to live zooplankters for developing marine fish larvae. Spec. Publ. Eur. Aquacult. Soc. 24: 265–266.

    Google Scholar 

  • Kolkovski, S., A. Tandler, G. Wm. Kissil & A. Gertler. 1993. The effect of dietary exogenous enzymes on digestion, assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae. Fish Physiol. Biochem. 12: 203–209.

    Google Scholar 

  • Korstad, J., Y. Olsen & O. Vadstein, 1989a. Life history characteristics of Brachionus plicatilis (Rotifera) fed different algae. Hydrobiologia 186/187: 43–50.

    Google Scholar 

  • Korstad, J., Y. Olsen & O. Vadstein, 1989b. Feeding kinetics of Brachionus plicatilis fed Isochrysis galbana. Hydrobiologia 186/187: 51–57.

    Google Scholar 

  • Korstad, J., A. Neyt, T. Danielsen, I. Overrein & Y. Olsen, 1995. Use of swimming speed and egg ratio as predictors of the status of rotifer cultures in aquaculture. Hydrobiologia 313/314: 395–398.

    Google Scholar 

  • Lauf, M. & R. Hofer, 1984. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture 37: 335–346.

    Google Scholar 

  • Lie, O., H. Haaland, G.-I. Hemre, A. Maage, E. Lied, G. Rosenlund, K. Sandnes & Y. Olsen, 1997. Nutritional composition of rotifers following a change in diet from yeast emulsified oil to microalgae. Aquaculture Int. 5: 427–438.

    Google Scholar 

  • Lubzens, E., 1987. Raising rotifers for use in aquaculture. Hydrobiologia 147: 245–255.

    Google Scholar 

  • Lubzens, E., 1989. Possible use of rotifer resting eggs and preserved live rotifers (Brachionus plicatilis) in aquaculture and mariculture. In De Paw, N., E. Jaspers & H. Ackeford (eds), Aquaculture - A Biotechnology in Progress. Eur. Aquacult. Soc, Bredene, Belgium: 741–750.

  • Lubzens, E. & G. Minkoff, 1988. Influence of the age of algae fed to rotifers (Brachionus plicatilis O. F. Muller) on the expression of mixis in their progenies. Oecologia 76: 430–435.

    Google Scholar 

  • Lubzens, E., G. Minkoff & S. Marom, 1985. Salinity dependence of sexual and asexual reproduction in the rotifer Brachionus plicatils. Mar. Biol. 85: 123–126.

    Google Scholar 

  • Lubzens, E., A. Tandler & G. Minkoff, 1989. Rotifers as food in aquaculture. Hydrobiologia 186/187: 387–400.

    Google Scholar 

  • Lubzens, E., O. Gibson, O. Zmora & A. Sukenik, 1995a. Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133: 295–309.

    Google Scholar 

  • Lubzens, E., G. Minkoff, Y. Barr & O. Zmora, 1997. Mariculture in Israel-past achievements and future directions in raising rotifers as food for marine fish larvae. Hydrobiologia 358: 13–20.

    Google Scholar 

  • Lubzens, E., G. Kolodny, B. Perry, N. Galai, R. Sheshinski & Y. Wax, 1990. Factors affecting survival of rotifers (Brachionus plicatilis O. F. Müller) at 4 C. Aquaculture 91: 23–47.

    Google Scholar 

  • Lubzens, E., D. Rankevich, G. Kolodny, O. Gibson, A. Cohen & M. Khayat, 1995b. Physiological adaptations in the survival of rotifers (Brachionus plicatilis O. F. Muller) at low temperatures. Hydrobiologia 313/314: 175–183.

    Google Scholar 

  • Maeda, M. & A. Hino, 1991. Environmental management for mass culture of rotifer, Brachionus plicatilis. In Fulks, W. & K. L. Main (eds), Rotifer and Microalgae Culture Systems. Proc. U.S.-Asia Workshop. The Oceanic Institute, Honolulu, HI: 125–133.

    Google Scholar 

  • Maeda, M., K. Nogami, M. Kanematsu & K. Hirayama, 1997. The concept of biological control method in aquaculture. Hydrobiologia 358: 285–290.

    Google Scholar 

  • Markridis, P. & Y. Olsen, 1999. Protein depletion of the rotifer Brachionus plicatilis during starvation. Aquaculture 174: 343–353.

    Google Scholar 

  • Markridis, O., A. J. Fjelheim, J. Skjermo & O. Vadstein, 2000. Control of bacterial flora of Brachionus plicatilis and Artemia franciscana by incubation in bacterial suspensions. Aquaculture 185-207-218.

  • Markridis, P., O. Bergh, A. J. Fiellheim, J. Skjermo & O. Vadstein, 1999. Microbial control of live food cultures. In Laird, L. & H. Reinertsen (eds), Towards Predictable Quality. Aquaculture Europe 99. Eur. Aquacult. Soc. Spec. Publ. No. 27, Oostende (Belgium): 155–157.

  • Merchie, G., Pl. Lavens & P. Sorgeloos, 1997. Optimization of dietary vitamin C in fish and crustacean larvae: a review. Aquaculture 155: 165–181.

    Google Scholar 

  • Minkoff, G., E. Lubzens & D. Kahan, 1983. Environmental facots affecting hatching of rotifer (Brachionus plicatilis) resting eggs. Hydrobiologia 104: 61–69.

    Google Scholar 

  • Miracle, M. R. & M. Serra, 1989. Salinity and temperature influence on rotifer life history characteristics. Hydrobiologia 186/187: 81–103.

    Google Scholar 

  • Munilla-Moran, R., J. R. Stark & A. Barbour, 1990. The role of exogenous enzymes in digestion in culture of turbot larvae (Scophthalmus maximus L.). Aquaculture 88: 337–350.

    Google Scholar 

  • Munro, P. D., R. J. Henderson, A. Barbour & T. H. Birkbeck. 1999. Partial decontamination of rotifers with ultraviolet radiation: the effect of changes in the bacterial load and flora of rotifers on mortalities in start-feeding larval turbot. Aquaculture 170: 229–244.

    Google Scholar 

  • Nagata, W. D. & H. Hirata, 1986. Mariculture in Japan: Past, present and future prespectives. Min. Rev. Data File Fish. Res. 4: 1–38.

    Google Scholar 

  • Nagata, W. D. & J. N. C. Whyte, 1992. Effect of yeast and alagal diets on the growth and biochemical composition of the rotifer Brachionus plicatilis (Muller) in culture. Aquacult. Fish. Manage. 1992. 23: 13–21.

    Google Scholar 

  • Navarro, N. & M. Yufera, 1998a. Influence of the food ration and individual density on production efficiency of semicontinuous cultures of Brachionus-fed mucroalgae dry powder. Hydrobiologia 387/388: 483–487.

    Google Scholar 

  • Navarro, N. & M. Yufera, 1998b. Population dynamics of rotifers (Brachionus plicatilis and Brachionus rotundiformis) in semicontinuous culture fed freeze-dried microalgae: influence of dilution rate. Aquaculture 166: 297–309.

    Google Scholar 

  • Nichols, D. S., P. Hart, P. D. Nichols & T. A. McMeekin, 1996. Enrichment of the rotifer Brachionus plicatilis fed an Antarctic bacterium containing polyunsaturated fatty acids. Aquaculture 147: 115–125.

    Google Scholar 

  • Øie, G. & Y. Olsen, 1997. Protein and lipid content of the rotifer Brachionus plicatilis during variable growth and feeding conditions. Hydrobiologia 358: 251–258.

    Google Scholar 

  • Øie, G., K. I. Reitan & Y. Olsen, 1994. Comparison of roifer culture quality with yeast plus oil and algal-based cultivation diets. Aquacult. Intern. 2: 225–238.

    Google Scholar 

  • Olsen, Y., K. I. Reitan & O. Vadstein, 1993. Dependence of temperature on loss rates of rotifers, lipids and ù3 fatty acids in starved Brachionus plicatilis cultures. Hydrobiologia 255/256: 13–20.

    Google Scholar 

  • Owen, J. M., J. W. Adron, C. Middleton & C. B. Cowey, 1975. Elongation and desaturation of dietary fatty acidsin turbot (Scophthalmus maximus L.) and rainbow trout (Salmo gaidneri Rich). Lipids 10: 528–531.

    Google Scholar 

  • Polo, A., M. Yufera & E. Pascual, 1992. Feeding and growth of gilthead seabream ( Sparus aurata L.) larvae in relation to size of the rotifer strain used as food. Aquaculture 103: 45–54.

    Google Scholar 

  • Pourriot, R. and T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213-224. Rainuzzo, J. R., K. I. Reitan & Y. Olsen, 1994. Effect of short-and long term enrichment on total lipids, lipid class and fatty acid composition. Aquacult. Int. 2: 19-32.

    Google Scholar 

  • Rainuzzo, J. R., K. I. Reitan & Y. Olsen, 1997. The significance of lipids at early stages of marine fish: a review. Aquaculture 155: 103–115.

    Google Scholar 

  • Reitan K. I., J. R. Rainuzzo, G. Øie & Y. Olsen, 1993. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture 118: 257–275.

    Google Scholar 

  • Rombaut, G., Ph. Dhert, J. Vandenberghe, L. Verschuere, P. Sorgeloos & W. Verstraete, 1999a. Selection of bacteria enhancing the growth rate of axenically hatched rotifers (Brachionus plicatilis). Aquaculture 176: 195–207.

    Google Scholar 

  • Rombaut, G., L. Vershuere, Ph. Dhert, P. Sorgeloos & W. Verstraete, 1999b. Multi-component probiotic for live feed (Brachionus plicatilis) cultures. In Laird, L. & H. Reinertsen (eds), Towards Predictable Quality. Aquaculture Oostende (Belgium): 201–202.

  • Rumengan, I. F. M. & K. Hirayama, 1990. Growth responses of genetically distict S and L type rotifer (Brachionus plicatilis) strains to different temperatures. In Hirano R. & I. Hanyu (eds), The Second Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippines: 33–35.

  • Sargent, J. R., L. A. McEvoy & J. G. Bell, 1997. Requirements, presentation and sources of unsaturated fatty acids in marine fish larval feeds. Aquaculture 155: 117–127.

    Google Scholar 

  • Sargent, J., L. McEvoy, A. Estevez, G. Bell, M. Bell, J. Henderson & D. Tocher, 1999. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179: 217–229.

    Google Scholar 

  • Satuito, C. G. & K. Hirayama, 1991. Supplementary effect of vitamin C and squid oil on the nutritional value of baker's yeast for the population growth of the rotifer Brachionus plicatilis. Bull. Fac. Fish. Nagasaki Univ. 69: 7–11.

    Google Scholar 

  • Schneider, J. C. A. Livne, A. Sukenik & P. Roussler, 1995. A mutant of Nannochloropsis deficient in eicosapentaenoic acid production. Phytochem. 40: 807–814.

    Google Scholar 

  • Scott, J. M., 1981. The vitamin B12 requirement of the marine rotifer Brachionus plicatilis. J. mar. biol. Ass. U. K. 61: 983–994.

    Google Scholar 

  • Skejrmo, J. & O. Vadstein, 1999. Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 177: 333–343.

    Google Scholar 

  • Snell, T. W., 1986. Effect of temperature, salinity and food level on sexual and asexual reproduction in Brachionus plicatilis (Rotifera). Mar. Biol. 92: 157–162.

    Google Scholar 

  • Snell, T. W., 1991. Improving the design of mass culture systems for the rotifer Brachionus plicatilis. In Fulks W. & K. L. Main (eds), Rotifer amdMicroalgae Culture Systems. Proc. U.S.- Asia Workshop. The Oceanic Insitute, Honolulu, HI: 61–71.

    Google Scholar 

  • Snell, T. W. & K. Carrillo, 1984. Body size variation among strains of the rotifer Brachionus plicatilis. Aquaculture 37: 359–367.

    Google Scholar 

  • Snell, T.W. & F. H. Hoff, 1985. The effect of environemental factors on resting egg production in the rotifer Brachionus plicatilis. J. World Maricult. Soc. 16: 484–497.

    Google Scholar 

  • Snell, T. W. & F. H. Hoff, 1988. Recent advances in rotifer culture. Aquaculture Mag. 9/10: 41–45.

    Google Scholar 

  • Snell, T. W., M. J. Childress, E. M. Boyer & F. H. Hoff, 1987. Assessing the status of rotifer mass cultures. J. World Aquacult. Soc. 18: 270–277.

    Google Scholar 

  • Suantika, G., P. Dhert, N. Nurhudah & P. Sorgeloos, 2000. Highdensity production of rotifer Brachionus plicatilis in recirculated system: consideration of water quality, zootechnical and nutrient aspects. Aquacult. Engineer. 21: 201–214.

    Google Scholar 

  • Takeyama, H., K. Iwamoto, S. Hara, H. Takano & T. Matsunaga, 1996. DHA enrichment of rotifers: a simple two-step culture using the unicellular algae Chlorella reularis and Isochrysis galbana. J. Mar. Biotechnol. 3: 244–247.

    Google Scholar 

  • Tamaru, C. Sau., C.-S. Lee & H. Ako, 1991. Improving the larval rearing of stiped mullet (Mugil cephalus) by manipulating quantity and quality of the rotifer, Brachionus plicatilis. In Fulks W. & K. L. Main (eds), Rotifer and Microalgae Culture Systems. Proc. U.S.-Asia Workshop. The Oceanic Insitute, Honolulu, HI: 61–71.

    Google Scholar 

  • Tamaru, C. S., R. Murashige, C.-S. Lee, H. Ako & V. Sato, 1993. Rotifers fed various diets of baker's yeast and/or Nannochloropsis oculata and their effect on the growth and survival of striped mullet (Mugil cephalus) and milkfish (Chanos chanos) larvae. Aquaculture 110: 361–372.

    Google Scholar 

  • Tandler, A., 1985/1985. Overview: food for the larval stages of marine fish. Live or inert? Isr. J. Zool. 33: 161–166.

    Google Scholar 

  • Teshima, S.-I., A. Kanazawa, K. Horinouchi, S. Yamasaki & H. Hirata, 1987. Phospholipids of the rotifer, prawn and larval fish. Nippon Suisan Gakkaishi 53: 609–615.

    Google Scholar 

  • Theilacker, G. & K. Dorsey, 1980. Larval fish diversity. A summary of laboratory and field research. Workshop on the effects of environmental variation on the survival of larval pelagic fishes. Intergovernmental Oceanic Commision Workshop Rep. 28: 105–142.

    Google Scholar 

  • Toledo, J. D. & H. Kurokura, 1990. Cryopreservation of the euryhaline rotifer Brachionus plicatilis embryos. Aquaculture 91: 385–394.

    Google Scholar 

  • Toledo, J. D., H. Kurokura & H. Nakagawa, 1991. Cryopreservation of different strains of the euryhaline rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 57: 1347–1350.

    Google Scholar 

  • Vadstein, O., G. Øie & O. Olsen, 1993. Particle size dependent feeding by the rotifer Brachionus plicatilis. Hydrobiologia 255/256: 261–267.

    Google Scholar 

  • Verpraet, R., M. Chair, P. Leger, H. Nelis, P. Sorgeloos & A. De Leenheer, 1992. Live-Food mediated drug delivery as a tool for disease treatment in Larviculture. The enrichment of therapeutics in rotifers and Artemia Nauplii. Aquacult. Engineer. 11: 133–139.

    Google Scholar 

  • Verdonck, L., L. Grisez, E. Sweetman, G. Minkoff, P. Sogeloos, O. Ollevier & J. Swings, 1997. Vibrio associated with routine production of Brachionus plicatilis. Aquaculture 149: 203–214.

    Google Scholar 

  • Walford, J. & T. J. Lam, 1993. Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109: 187–205.

    Google Scholar 

  • Walz, N., 1993. Plankton Regulation Dynamics. Experiments and Models in Rotifer Continuous Cultures. Springer Verlag, Berlin (Germany). Ecol. Stud. 98: 308 pp.

  • Walz, N., T. Hintze & R. Rusche, 1997. Algae and rotifer turbidostatas: studies on stability of live food cultures. Hydrobiologia 358: 127–132.

    Google Scholar 

  • Watanabe, T., C. Kitajima & S. Fujita, 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34: 115–143.

    Google Scholar 

  • Wesenberg-Lund, C., 1923. Contribution to the biology of the Rotifera, I. The males of Rotifera. Kgl. Dansk Vid. Selsk. Skr. Nat. math. Afd. Ser. 8, 4: 190–345.

    Google Scholar 

  • Whyte, J. N. C. & W. D. Nagata, 1990. Carbohydrate and fatty acid composition of the rotifer, Brachionus plicatilis, fed monospecific diets of yeast and phytoplankton. Aquaculture: 89: 263–368.

    Google Scholar 

  • Yoshimura, K., A. Hagiwara, T. Yoshimatsu & C. Kitajima, 1996. Culture technology of marine rotifers and implication for intensive culture of marine fish in Japan. Mar. freshwat. Res. 47: 217–222.

    Google Scholar 

  • Yoshimura, K., K. Usuki, T. Yoshimatsu, C. Kitajima & A. Hagiwara, 1997. Recent developments of a high density mass culture system for the rotifer Brachionus rotundiformis Tschugunoff. Hydrobiologia 358: 139–144.

    Google Scholar 

  • Yu, J. & K. Hirayama, 1986. The effect of un-ionized ammonia on the population growth of the rotifer in mass culture. Bull. Jap. Soc. Sci. Fish. 52: 1509–1513.

    Google Scholar 

  • Yu, J.-P., A. Hino, R. Hirano & K. Hirayama, 1988. Vitamin B12 producing bacteria as a nutritive complement for the culture of the rotifer Brachionus plicatilis. Nippon. Suisan Gakkaishi 54: 1873–1880.

    Google Scholar 

  • Yu, J.-P., A. Hino, M. Ushiro & M. Maeda, 1989. Function of bacteria as vitamin B12 producers during mass culture of the rotifer Brachionus plicatilis. Nippon. Suisan Gakkaishi 55: 1799–1806.

    Google Scholar 

  • Yu, J.-P., A. Hino, R. Hirano & K. Hirayama, 1990a. The role of bacteria in mass culture of the rotifer Brachionus plicatilis. In Hirano, R. & I. Hanyu (eds), The Second Fisheries Society. Manila, Philippines: 29–32.

    Google Scholar 

  • Yu, J.-P., A. Hino, T. Noguchi & H. Wakabayashi, 1990b. Toxicity of Vibrio alginolyticus on the survival of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 56: 1455–1460.

    Google Scholar 

  • Yufera, M. & E. Pascual, 1989. Biomass and elemental composition (C.H.N.) of the rotifer Brachionus plicatilis cultured as larval food. Hydrobiologia 186/187: 371–374.

    Google Scholar 

  • Yufera, M. & N. Navarro, 1995. Population growth dynamic of the rotifer Brachionus plicatilis cultured in non-limiting food condition. Hydrobiologia 313/314: 399–405.

    Google Scholar 

  • Yufera, M., G. Parra & E. Pascual, 1997. Energy content of rotifers (Brachionus plicatilis and Brachionus rotundiformis) in relation to temperature. Hydrobiologia 358: 83–87.

    Google Scholar 

  • Zmora, O., 1991. Management, production and disease interaction in rotifer culture. In Lavens P., P. Sorgeloos, E. Jaspers & F. Ollevier (eds), Larvi’ 91 - Fish and Crustacean Larviculture Symposium. Eur. Aquacult. Soc. Spec. Publ. 15, Ghent (Belgium): 104 pp.

  • Zmora, O., Y. Barr & A. Tandler, 1991. Report on a visit to several European commercial fish hatcheries (in Hebrew). Israel Oceanographic and Limnological Research Reports: 63 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubzens, E., Zmora, O. & Barr, Y. Biotechnology and aquaculture of rotifers. Hydrobiologia 446, 337–353 (2001). https://doi.org/10.1023/A:1017563125103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017563125103

Navigation