Skip to main content
Log in

Electrochemical investigation of copper oxide films formed by oxygen plasma treatment

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Linear potential sweep voltammetry was used to characterize the copper oxides grown on a metal substrate when exposed to a low pressure inductively coupled oxygen plasma. This study confirms the formation of a precursor oxide CuxO (x > 4), two copper(i) oxides Cu2-xO and Cu3O2 and copper(ii) oxide CuO. The electrochemical reduction curve of CuxO is characterized in aqueous solution (pH 9.2) by a minor peak near –0.5V vs SCE while the two Cu(i) oxides present one reduction peak at −0.8 VvsSCE and cannot be electrochemically separated; CuO is reduced to Cu(i) at −0.65V vs SCE. The reduction potentials of the copper(i) and copper(ii) oxides vary with the oxide layer thickness which increases with the time of exposure to the plasma and the injected electric power and decreases as the distance between the sample and the 1st coil increases for given treatment parameters. In addition, a mechanism is proposed for the reduction of thin films containing the copper(i) and copper(ii) oxides formed after plasma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Brisset, S. Longchamp, P. Surbled and M. Vittecoq, Proc 4th International Symposium on High Pressure Low Temperature Plasma Chemistry, Bratislava, Slovakia (1993) p. 117.

  2. A. Goldman and R. S. Sigmond, J. Electrochem. Soc. 132 (1985) 2842.

    Google Scholar 

  3. M. Carballeira, A. Carballeira and J. Y. Gal, Proceedings of the 14th International Conference on Electric Contacts, Paris, France (1988) p. 239.

  4. J. Kúudela, V. Sobek, M. Luknárova P. Lukác and J. D. Skalný, Acta, Physica Univ. Comenianae 33 (1992) 209.

    Google Scholar 

  5. B. G. Bagley, L. H. Greene, J. M. Tarascon and G. W. Hull, Appl. Phys. Lett. 51 (1987) 622.

    Google Scholar 

  6. A. Yoshida, H. Tamura, S. Morohashi and S. Hasuo, ibid. 55 (1989) 2354.

    Google Scholar 

  7. R. L. Deutscher and R. Woods, J. Appl. Electrochem. 16 (1986) 413.

    Google Scholar 

  8. M. Lenglet, K. Kartouni and D. Delahaye, ibid. 21 (1991) 697.

    Google Scholar 

  9. J. M. Machefert, M. Lenglet, D. Blavette, A. Menand and A. D' Huysser, 'Structure and Reactivity of Surfaces', Elsevier Sciences Publishers B.V., Amsterdam (1989) p. 625.

    Google Scholar 

  10. B. Lefez, K. Kartouni, M. Lenglet, D. Rönnow and C. G. Ribbing, Surf. & Interface Anal. 22 (1994) 451.

    Google Scholar 

  11. E. Sutter, C. Fiaud and D. Lincot, Electrochim. Acta 38 (1993) 1471.

    Google Scholar 

  12. H. Pops and D. R. Hennessy, Wire J. 10 (1977) 50.

    Google Scholar 

  13. H. Strehblow and B. Titze, Electrochim. Acta, 25 (1980) 839.

    Google Scholar 

  14. M. R. Gennerro de Chialvo, S. L. Marchiano and A. J. Arvia, J. Appl. Electrochem. 14 (1984) 165.

    Google Scholar 

  15. U. R. Evans and A. Miley, Nature 139 (1937) 283.

    Google Scholar 

  16. [16] P. Pascal, Nouveau Traité de Chimie Minérale III, Masson, Paris (1957).

  17. D. Personn and C. Leygraf, J. Electrochem. Soc. 140 (1993)1256.

    Google Scholar 

  18. J. Y. Malvault, J. Lopitaux, D. Delahaye and M. Lenglet, J. Appl. Electrochem. 25 (1995) 841.

    Google Scholar 

  19. H. Wieder and A. W. Czanderna, J. Phys. Chem. 66 (1962) 816.

    Google Scholar 

  20. E. G. Clarke and A. W. Czanderna, Surf. Sci. 49 (1975 529.

    Google Scholar 

  21. H. Neumeister and W. Jaenike, Z. Phys. Chem. B108 (1977) 217.

    Google Scholar 

  22. M. Lenglet and K. Kartouni, La Revue de Métallugie-CIT/ Science et Génie des Matériaux 12 (1993)1637.

    Google Scholar 

  23. S. Brahms, J. P. Dahl and S. Nikitine, J. Phys. C3-32 (1967) 28.

    Google Scholar 

  24. P. Marksteiner, P. Blaha and K. Schwarz, Z. Physik. B64 (1986) 119.

    Google Scholar 

  25. H. Wieder and A. W. Czanderna, J. Appl. Phys. 37 (1966) 184.

    Google Scholar 

  26. J. Bloem, Phil. Res. Rep. 13 (1958) 167.

    Google Scholar 

  27. C. K. Teh and F. L. Weichman, Can. J. Phys. 61 (1983) 1423.

    Google Scholar 

  28. R. G. Greenler, R. R. Rahn and J. P. Schwartz. J. Catal. 23 (1971) 42.

    Google Scholar 

  29. N. Bellakhal, Thèse, Université Paris VI (1995).

  30. N. Bellakhal, K. Draou, B. Chéron, M. Lenglet and J. L. Brisset, Proceedings ISPC 12 Minneapolis, USA (1995) p.1583.

  31. H. H. Strehblow and B. Titze, Electrochim. Acta, 25 (1980) 839.

    Google Scholar 

  32. S. M. Wilhelm, Y. Tanizawa, C.Y. Liu and N. Hackerman, Corros. Sci. 22 (1982) 791.

    Google Scholar 

  33. B. Millet, Thèse, Université Paris VI (1994).

  34. E. Beucher, B. Lefez and M. Lenglet, Phys. Stat. Sol. 136 (1993) 139.

    Google Scholar 

  35. N. A. Tolstoi and V. A. Bonch-Bruevich, Sov. Phys. Solid State 13 (1971) 1135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BELLAKHAL , N., DRAOU , K. & BRISSET , J.L. Electrochemical investigation of copper oxide films formed by oxygen plasma treatment. Journal of Applied Electrochemistry 27, 414–421 (1997). https://doi.org/10.1023/A:1018409620079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018409620079

Keywords

Navigation