Skip to main content
Log in

What Can One Learn About Self-Organized Criticality from Dynamical Systems Theory?

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We develop a dynamical system approach for the Zhang model of self-organized criticality, for which the dynamics can be described either in terms of iterated function systems or as a piecewise hyperbolic dynamical system of skew-product type. In this setting we describe the SOC attractor, and discuss its fractal structure. We show how the Lyapunov exponents, the Haussdorf dimensions, and the system size are related to the probability distribution of the avalanche size via the Ledrappier–Young formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Bak, C. Tang, and K. Wiesenfeld, Self organised criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59(4):381–384 (1987).

    Google Scholar 

  2. P. Bak, C. Tang, and K. Wiesenfeld, Self organised criticality, Phys. Rev. A. 38(1):364–374 (1988).

    Google Scholar 

  3. P. Bak, How Nature Works (Springer-Verlag, 1996).

  4. P. Bàntay and M. Jànosi, Self-organization and anomalous diffusion, Physica A 185:11–18 (1992).

    Google Scholar 

  5. M. Barnsley, Fractals Everywhere (Academic Press, Boston, 1988).

    Google Scholar 

  6. C. Beck and F. Schloegl, Thermodynamics of Chaotic Systems (Cambridge Non Linear Science Series 4, 1993).

  7. Ph. Blanchard, B. Cessac, and T. Krüger, A dynamical systems approach for SOC models of Zhang's type, J. Stat. Phys. 88:307–318 (1997).

    Google Scholar 

  8. Ph. Blanchard, B. Cessac, and T. Krüger, Ergodicity in one dimensional self-organized criticality, in preparation.

  9. Ph. Blanchard, B. Cessac, and Krüger, Lyapunov exponents and critical exponents in self-organized criticality, in preparation.

  10. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes in Math. 470 (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  11. B. Cessac, Ph. Blanchard, and T. Krüger, A Dynamical System Approach to Self-Organized Criticality (Mathematical Results in Statistical Mechanics, Marseille 1998, Word Scientific Singapore).

  12. D. Dhar, Phys. Rev. Lett. 64:1613 (1990); D. Dhar and S. N. Majumdar, J. Phys. A 23:4333 (1990); S. N. Majumdar and D. Dhar, Physica A 185:129 (1992). D. Dhar and R. Ramaswamy, Phys. Rev. Lett. 63:1659 (1989).

    Google Scholar 

  13. Díaz-guilera, Dynamic renormalization group approach to self-organized critical phenomena, Europhys. Let. 26(3):177–182 (1994); Díaz-guilera, Noise and dynamics of self-organized critical phenomena, Phys. Rev. A 45(12):8551-8558 (1992).

    Google Scholar 

  14. J. P. Eckmann and D. Ruelle, Ergodic theory of strange attractors, Rev. of Mod. Physics 57:617 (1985); J. P. Eckmann, O. Kamphorst, D. Ruelle, and S. Cilliberto, Phys. Rev. A 34:4971 (1986).

    Google Scholar 

  15. F. Gantmacher, Theéorie des Matrices (Jacques Gabay É ditions).

  16. K. Falconer, Techniques in Fractal Geometry (Wiley, 1997).

  17. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge Non-Linear Science Series 9, 1998).

  18. J. E. Hutchinson, Fractals and self-similarity, Indiana University Mathematics Journal 30(5) (1981).

  19. H. J. Jensen, Self-organized criticality emergent complex behavior, in Physical and Biological Systems (Cambridge Lecture Notes in Physics 10, Cambridge University Press, 1998).

  20. F. Ledrappier and L. S. Young, The metric entropy for diffeomorphisms, Annals of Math. 122:509–574 (1985).

    Google Scholar 

  21. S. Luebeck, Large-scale simulations of the Zhang sandpile model, Phys. Rev. E. 56(2):1590–1594 (1997).

    Google Scholar 

  22. Ya. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys 32:55–114 (1977).

    Google Scholar 

  23. L. Pietronero, P. Tartaglia, and Y. C. Zhang, Theoretical studies of self-organized criticality, Physica A 173:2244 (1991); R. Cafiero, V. Loreto, L. Pietronero, A. Vespignani, and S. Zapperi, Local rigidity and self-organized criticality for avalanches, Europ. Let. 129(2):111-116 (1995); L. Pietronero, A. Vespignani, and S. Zapperi, Phys. Rev. Lett. 72:1690 (1994); A. Vespignani, S. Zapperi, and L. Pietronero, Phys. Rev. E 51:1711 (1995).

    Google Scholar 

  24. M. Pollicott, Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds (London Math. Soc., Lect. Notes Series 180, Cambridge University Press, 1993).

  25. D. Ruelle, Thermodynamic Formalism (Reading, Massachusetts, Addison-Wesley, 1978).

    Google Scholar 

  26. J. Schmeling, Habilitation Thesis (Berlin, 1996).

  27. Ya. G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 27(4):21–69 (1972).

    Google Scholar 

  28. E. H. Speer, J. Stat. Phys. 71:61 (1993).

    Google Scholar 

  29. L. S. Young, Ergodic theory of differentiable dynamical systems. “Real and complex dynamics,” Ed. Branner and Hjorth, NATO ASI series, Kluwer Academic Publishers, 1995, pp. 293–336.

  30. H. Y. Zhang, Scaling theory of self-organized criticality, Phys. Rev. Let. 63(5):470–473 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, P., Cessac, B. & Krüger, T. What Can One Learn About Self-Organized Criticality from Dynamical Systems Theory?. Journal of Statistical Physics 98, 375–404 (2000). https://doi.org/10.1023/A:1018639308981

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018639308981

Navigation