Skip to main content
Log in

Increasing Paracellular Porosity by E-Cadherin Peptides: Discovery of Bulge and Groove Regions in the EC1-Domain of E-Cadherin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objective of this work is to evaluate the ability of peptides derived from the bulge (HAV-peptides) and groove (ADT-peptides) regions of E-cadherin EC1-domain to increase the paracellular porosity of the intercellular junctions of Madin-Darby canine kidney (MDCK) cell monolayers.

Methods. Peptides were synthesized using a solid-phase method and were purified using semi-preparative HPLC. MDCK monolayers were used to evaluate the ability of cadherin peptides to modulate cadherin-cadherin interactions in the intercellular junctions. The increase in intercellular junction porosity was determined by the change in transepithelial electrical resistance (TEER) values and the paracellular transport of 14C-mannitol.

Results. HAV- and ADT-peptides can lower the TEER value of MDCK cell monolayers and enhance the paracellular permeation of 14C-mannitol. HAV- and ADT-decapeptides can modulate the intercellular junctions when they are added from the basolateral side but not from the apical side; on the other hand, HAV- and ADT-hexapeptides increase the paracellular porosity of the monolayers when added from either side. Conjugation of HAV- and ADT-peptides using ω-aminocaproic acid can only work to modulate the paracellular porosity when ADT-peptide is at the N-terminus and HAV-peptide is at the C-terminus; because of its size, the conjugate can only modulate the intercellular junction when added from the basolateral side.

Conclusions. Peptides from the bulge and groove regions of the EC1 domain of E-cadherin can inhibit cadherin-cadherin interactions, resulting in the opening of the paracellular junctions. These peptides may be used to improve paracellular permeation of peptides and proteins. Furthermore, this work suggests that both groove and bulge regions of EC-domain are important for cadherin-cadherin interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. L. Lutz and T. J. Siahaan. Molecular structure of the apical junction complex and its contribution to the paracellular barrier. J. Pharm. Sci. 86:977–984 (1997).

    Google Scholar 

  2. K. L. Lutz, S. Bogdanowich-Knipp, D. Pal, and T. J. Siahaan. Structure, function and modulation of E-cadherins as mediators of cell-cell adhesion. Curr. Top. in Pept. Prot. Res. 2:69–82 (1997).

    Google Scholar 

  3. J. L. Madara. Tight junction dynamics: Is paracellular transport regulated? Cell 53:497–498 (1988).

    Google Scholar 

  4. J. M. Anderson and C. M. Van Itallie. Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. 269:G467–G475 (1995).

    Google Scholar 

  5. A. Adson, T. J. Raub, P. S. Burton, C. L. Barsuhn, A. R. Hilgers, K. L. Audus, and N. F. H. Ho. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J. Pharm. Sci. 83:1529–1536 (1994).

    Google Scholar 

  6. K. L. Lutz and T. J. Siahaan. Modulation of the cellular junction protein E-cadherin in bovine brain microvessel endothelial cells by cadherin peptides. Drug Delivery 4:187–193 (1997).

    Google Scholar 

  7. D. Pal, K. L. Audus, and T. J. Siahaan. Modulation of cellular adhesion in bovine microvessel endothelial cells by a decapeptide. Brain Res. 747:103–113 (1997).

    Google Scholar 

  8. I. T. Makagiansar, M. Avery, Y. Hu, K. L. Audus, and T. J. Siahaan. Improving selectivity of HAV-peptides in modulating E-cadherin-E-cadherin interactions in the intercellular junctions of MDCK cell monolayers. Pharm. Res. 18:446–453 (2001).

    Google Scholar 

  9. B. Gumbiner. Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253:749–758 (1987).

    Google Scholar 

  10. B. Gumbiner. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. Cell. Biol. 107:1575–1587 (1988).

    Google Scholar 

  11. A. W. Koch, D. Bozic, O. Pertz, and J. Engel. Homophilic adhesions by cadherins. Curr. Opin. Struc. Biol. 9:275–281 (1999).

    Google Scholar 

  12. M. Takeichi. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455 (1991).

    Google Scholar 

  13. M. Takeichi. The cadherins: Cell-cell adhesion molecules controlling animal mophogenesis. Development 102:639–655 (1988).

    Google Scholar 

  14. M. Takeichi. Cadherins: A molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59:237–252 (1990).

    Google Scholar 

  15. I. Makagiansar, E. Sinaga, A. Calcagno, R. Xu, and T. J. Siahaan. Roles of E-cadherin and β-catenin in cell adhesion and signaling and possible therapeutic application. Curr. Top. Biochem. Res. 2:51–61 (2000).

    Google Scholar 

  16. M. Overduin, T. Harvey, S. Bagby, K. Tong, P. Yau, M. Takeichi, and M. Ikura. Solution structure of the epithelial cadherin domain responsible for selective cell-adhesion. Science 267:386–389 (1995).

    Google Scholar 

  17. B. Nagar, M. Overduin, M. Ikura, and J. M. Rini. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380:360–364 (1996).

    Google Scholar 

  18. L. Shapiro, A. M. Fannon, P. D. Kwong, A. Thompson, M. S. Lehmann, G. Grubel, J. F. Legrand, J. Als-Nielsen, D. R. Colman, and W. A. Hendrickson. Structural basis of cell-cell adhesion by cadherins. Nature 374:327–337 (1995).

    Google Scholar 

  19. J. Alattia, H. Kurokawa, and M. Ikura. Structural view of cadherin-mediated cell-cell adhesion. Cell. Mol. Life Sci. 55:359–367 (1999).

    Google Scholar 

  20. C. L. Adams and W. J. Nelson. Cytomechanics of cadherinmediated cell-cell adhesion. Curr. Opin. Cell Biol. 10:572–577 (1998).

    Google Scholar 

  21. I. T. Makagiansar, P. D. Nguyen, A. Ikesue, K. Kuczera, W. Dentler, J. L. Urbauer, N. Galeva, M. Alterman, and T. J. Siahaan. Disulfide bond formation promotes the cis-and transdimerization of the E-cadherin derived first repeat (E-CAD1). J. Biol. Chem. 277:6002–10010 (2002).

    Google Scholar 

  22. S. Chappuis-Flament, E. Wong, L. D. Hicks, C. M. Kay, and B. M. Gumbiner. Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J. Cell Biol. 154:231–243 (2001).

    Google Scholar 

  23. A. Nose, K. Tsuji, and M. Takeichi. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155 (1990).

    Google Scholar 

  24. K. L. Lutz, L. A. Szabo, D. L. Thompsons, and T. J. Siahaan. Antibody recognition of peptide sequences from the cell-cell adhesion proteins: N-and E-cadherins. Pept. Res. 9:233–239 (1996).

    Google Scholar 

  25. K. L. Lutz and T. J. Siahaan. E-cadherin peptide sequence recognition by an anti-E-cadherin antibody. Biochem. Biophys. Res. Commun. 211:21–27 (1995).

    Google Scholar 

  26. M. Takeichi. Morphogenetic roles of classic cadherins. Curr. Opin. Cell. Biol. 7:619–627 (1995).

    Google Scholar 

  27. K. Boller, D. Vestweber, and R. Kemler. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell Biol. 100:327–332 (1985).

    Google Scholar 

  28. G. Christofori and H. Semb. The role of the cell-adhesion molecule E-cadherin as a tumour suppressor gene. Trends. Biochem. Sci. 24:73–76 (1999).

    Google Scholar 

  29. M. Katayama, S. Hirai, K. Kamihagi, K. Nakagawa, M. Yasumoto, and I. Kato. Soluble E-cadherin fragments increased in circulation of cancer patients. Br. J. Cancer 69:580–585 (1994).

    Google Scholar 

  30. J. Behrens, W. Birchmeier, S. L. Goodman, and B. A. Imhof. Dissociation of MDCK cells by the monoclonal antibody anti-arc-1: Mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell Biol. 101:1307–1315 (1985).

    Google Scholar 

  31. L. Gonzalez-Mariscal, B. Chavez de Ramirez, and M. Cereijido. Tight junction formation in cultured epithelial cells (MDCK). J. Membr. Biol. 86:113–125 (1985).

    Google Scholar 

  32. O. Pertz, D. Bozic, A. W. Koch, C. Fauser, A. Brancaccio, and J. Engel. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. Embo J. 18:1738–1747 (1999).

    Google Scholar 

  33. K. L. Lutz, D. Pal, K. L. Audus, and T. J. Siahaan. Inhibition of E-cadherin-mediated cell-cell adhesion by cadherin peptides. In J. P. Tam and P. T. P. Kaumaya. (eds.), Peptides: Frontiers of Science, Kluwer Academic Press, Boston, 1999 pp. 753–754.

    Google Scholar 

  34. J. M. Berman, M. Goodman, T. M. Nguyen, and P. W. Schiller. Cyclic and acyclic partial retro-inverso enkephalinamides: Mu receptor selective enzyme resistant analogs. Biochem. Biophys. Res. Commun. 115:864–870 (1983).

    Google Scholar 

  35. N. Chaturvedi, M. Goodman, and C. Bowers. Topochemically related hormone structures. Synthesis of partial retro-inverso analogs of LH-RH. Int. J. Pept. Protein Res. 17:72–88 (1981).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinaga, E., Jois, S.D.S., Avery, M. et al. Increasing Paracellular Porosity by E-Cadherin Peptides: Discovery of Bulge and Groove Regions in the EC1-Domain of E-Cadherin. Pharm Res 19, 1170–1179 (2002). https://doi.org/10.1023/A:1019850226631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019850226631

Navigation