Skip to main content
Log in

Comparison of the substrate specificity of the two bacterial desulfurization systems

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Using cell-free extracts of a desulfurizing mesophile, Rhodococcus erythropolis KA2-5-1 (the Dsz system) and Escherichia coli JM109, which possesses the desulfurizing genes of a thermophile Paenibacillus sp. A11-2 (the Tds system), the reactivity of desulfurizing enzymes toward 4,6-dialkyl dibenzothiophenes (4,6-dialkyl DBTs) and 7-alkyl benzothiophenes (7-alkyl BTs) was investigated. Both systems desulfurized all the 4,6-dialkyl DBTs, except 4,6-dibutyl DBT. Although some alkylated BTs were degraded by the Dsz system, no desulfurized compounds were detected. The reactivity of the Tds system toward alkylated BTs was higher than that of DBT. In contrast to the Dsz system, the Tds system yielded desulfurized compounds from all of the alkylated BTs examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Constanti M, Giralt J, Bordons A (1994) Desulfurization of dibenzothiophene by bacteria. World J. Microbiol. Biotechnol. 10: 510-516.

    Google Scholar 

  • Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J. Bacteriol. 176: 6707-6716.

    Google Scholar 

  • Foght JM, Fedorak PM, Gray MR, Westlake DWS (1990) Microbial desulfurization of petroleum. In: Ehrlich HL, Brieley CL, ed. Microbial Mineral Recovery. New York: McGraw-Hill Book Co., pp. 379-407.

    Google Scholar 

  • Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 14: 1705-1709.

    Google Scholar 

  • Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci. Biotechnol. Biochem. 65: 239-246.

    Google Scholar 

  • Ishii Y, Konishi J, Okada H, Hirasawa K, Onaka T, Suzuki M(2001) Operon structure and functional analysis of the genes encoding thermophilic enzymes of Paenibacillus sp. A11-2. Biochem. Biophys. Res. Commun. 270: 81-88.

    Google Scholar 

  • Ishii Y, Konishi J, Suzuki M, Maruhashi K (2000) Cloning and expression of the gene encoding the thermophilic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. J. Biosci. Bioeng. 90: 591-599.

    Google Scholar 

  • Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M (1994) Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1. Appl. Environ. Microbiol. 60: 109-123.

    Google Scholar 

  • Kilbane JJ (1989) Desulfurization of coal: the microbial solution. Trends Biotechnol. 7: 97-101.

    Google Scholar 

  • Kobayashi M, Horiuchi K, Yoshikawa O, Hirasawa K, Ishii Y, Fujino K, Sugiyama H, Maruhashi K (2001) Kinetic analysis of microbial desulfurization of model and light gas oils containing multiple alkyl dibenzothiophenes. Biosci. Biotechnol. Biochem. 65: 298-304.

    Google Scholar 

  • Kobayashi M, Onaka T, Ishii Y, Konishi J, TakakiM, Okada H, Ohta Y, Koizumi K, Suzuki M (2000) Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain. FEMS Microbiol. Lett. 187: 151-154.

    Google Scholar 

  • Konishi J, Ishii Y, Onaka T, Okumera K, Suzuki M (1997) Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl. Environ. Microbiol. 63: 3164-3169.

    Google Scholar 

  • Konishi J, Ishii Y, Onaka T, Ohta Y, Suzuki M, Maruhashi K (2000a) Purification and characterization of dibenzothiophene sulfone monooxygenase and FMN-dependent NADH oxidoreductase from the thermophilic bacterium Paenibacillus sp. strain A11-2. J. Biosci. Bioeng. 90: 607-613.

    Google Scholar 

  • Konishi J, Onaka T, Ishii Y, Suzuki M (2000b) Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol. Lett. 187: 151-154.

    Google Scholar 

  • Ohshiro T, Kojima T, Torii K, Kawasoe H, Izumi Y (1999) Purifi-cation and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. J. Biosci. Bioeng. 88: 610-616.

    Google Scholar 

  • Ohshiro T, Suzuki K, Izumi Y (1997) Dibenzothiophene degrading enzyme responsible for the first step of DBT desulfurization by Rhodococcus erythropolis D-1: purification and characterization. J. Ferment. Bioeng. 83: 233-237.

    Google Scholar 

  • Piddinton CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 61: 468-475.

    Google Scholar 

  • Shennan JL (1996) Microbial attack on sulfur-containing hydrocarbons. J. Chem. Tech. Biotechnol. 67: 109-123.

    Google Scholar 

  • Wang P, Kraviec S (1994) Desulfurization of dibenzothiophene to 2-hydroxybiphenyl by some newly isolated bacterial strains. Arch. Microbiol. 161: 266-271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konishi, J., Okada, H., Hirasawa, K. et al. Comparison of the substrate specificity of the two bacterial desulfurization systems. Biotechnology Letters 24, 1863–1867 (2002). https://doi.org/10.1023/A:1020957516297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020957516297

Navigation