Skip to main content
Log in

Thermally Induced Solid-State Syntheses of γ-Fe2O3 Nanoparticles and Their Transformation to α-Fe2O3 via ε-Fe2O3

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The thermally induced solid-state syntheses of γ-Fe2O3 nanoparticles from iron-bearing materials (FeSO4, Fe2(C2O4)3 and almandine garnet) are described. Magnetic properties, particles size and the mechanism of the structural change of γ-Fe2O3 nanoparticles have been investigated using 57Fe Mössbauer spectroscopy, X-ray powder diffraction (XRD) and atomic force microscopy (AFM). γ-Fe2O3 nanoparticles are transformed into hematite via ε-Fe2O3 as the intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McMichael, R. D., Shull, R. D., Swartzendruber, L. J. and Bennett, L. H., J. Magn. Magn. Mater. 111 (1992), 29.

    Google Scholar 

  2. Häfeli, U., Schütt, W., Teller, J. and Zborowski, M. (eds), Scientific and Clinical Applications of Magnetic Carriers, Plenum, New York, 1997.

    Google Scholar 

  3. Günther, L., Phys. World 3 (1990), 28.

    Google Scholar 

  4. Shön, G. and Simon, U., Colloid Polym. Sci. 273 (1995), 101.

    Google Scholar 

  5. Nixon, L., Koval, C. A. and Noble, R. D., Chem. Mater. 4 (1992), 117.

    Google Scholar 

  6. Anton, I., J. Magn. Magn. Mater. 85 (1990), 219.

    Google Scholar 

  7. Livage, J., J. Phys. Chem. 42 (1981), 981.

    Google Scholar 

  8. Grimm, S., Schultz, M., Barth, S. and Müller, R., J. Mater. Sci. 32 (1997), 1083.

    Google Scholar 

  9. Batis-Landoulsi, H. and Vergnon, P., J. Mater. Sci. 18 (1983), 3399.

    Google Scholar 

  10. Pascal, C., Pascal, J. L., Favier, F., Elidrissi Moubtassim, M. L. and Payen, C., Chem. Mater. 11 (1999), 141.

    Google Scholar 

  11. Ennas, G., Musinu, A., Piccaluga, G., Zedda, D., Gatteschi, D., Sangregorio, C., Stanger, J. L., Concas, G. and Spano, G., Chem. Mater. 10 (1998), 495.

    Google Scholar 

  12. Cannas, C., Gatteschi, D., Musinu, A., Piccaluga, G. and Sangregorio, C., J. Phys. Chem. B 102 (1998), 7721.

    Google Scholar 

  13. Dormann, J. L., Viart, N., Rehspringer, J. L., Ezzir, A. and Niznansky, D., Hyp. Interact. 112 (1998), 89.

    Google Scholar 

  14. Martinez, B., Roig, A., Obradors, X., Mollins, E., Rouanet, A. and Monty, C., J. Appl. Phys. 79 (1996), 2580.

    Google Scholar 

  15. Ayyub, P., Multani, M., Barma, M., Palkar, V. R. and Vijayaraghavan, R., J. Phys. C 21 (1988), 2229.

    Google Scholar 

  16. Heiman, N. and Kazama, N. S., J. Appl. Phys. 50 (1979), 7633.

    Google Scholar 

  17. Tronc, E., Chanéac, C. and Jolivet, J. P., J. Solid State Chem. 139 (1998), 93.

    Google Scholar 

  18. Dézsi, I. and Coey, J. M. D., Phys. Status. Solidi A 15 (1973), 681.

    Google Scholar 

  19. Schrader, R. and Büttner, G., Z. Anorg. Allg. Chem. 320 (1963), 220.

    Google Scholar 

  20. Powder Diffraction File 1997, International Center for Diffraction Data, Pennsylvania, USA.

  21. Wivel, C. and Mørup, S., J. Phys. E 14 (1981), 605.

    Google Scholar 

  22. de Bakker, P. M. A., de Grave, E., Vandenberghe, R. E. and Bowen, L. H., Hyp. Interact. 54 (1990), 493.

    Google Scholar 

  23. Haneda, K. and Morrish, A. H., Phys. Lett. 64 (1977), 259.

    Google Scholar 

  24. Serna, C. J., Bødker, F., Mørup, S., Morales, M. P., Sandiumenge, F. and Veintemillas-Verdaguer, S., Solid State Commun. 118 (2001), 437.

    Google Scholar 

  25. da Costa, G. M., de Grave, E. and Vandenberghe, R. E., Clay Clay Miner. 43 (1995), 562.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zboril, R., Mashlan, M., Barcova, K. et al. Thermally Induced Solid-State Syntheses of γ-Fe2O3 Nanoparticles and Their Transformation to α-Fe2O3 via ε-Fe2O3 . Hyperfine Interactions 139, 597–606 (2002). https://doi.org/10.1023/A:1021226929237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021226929237

Keywords

Navigation