Skip to main content
Log in

TNF-α in Pregnancy Loss and Embryo Maldevelopment: A Mediator of Detrimental Stimuli or a Protector of the Fetoplacental Unit?

  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose : Tumor necrosis factor alpha (TNF-α), a multifunctional cytokine, has been identified in the ovary, oviduct, uterus, and placenta, and is expressed in embryonic tissues. For many years TNF-α was mainly considered to be a cytokine involved in triggering immunological pregnancy loss and as a mediator of various embryopathic stresses. However, data collected during the last decade has characterized TNF-α not only as a powerful activator of apoptotic, but also antiapoptotic signaling cascades, as well as revealed its regulatory role in cell proliferation. This review summarizes and conceptualizes the studies addressing TNF-α-activated intracellular signaling and the possible functional role of TNF-α in embryonic development.

Methods : Studies addressing the role of TNF-α in intercellular signaling, in vivo studies addressing the functional role TNF-α in spontaneous and induced pregnancy loss, and studies addressing the role of TNF-α in fetal malformations were reviewed. Comparative studies in TNF-α knockout and TNF-α positive mice were performed to evaluate embryonic death, structural anomalies in fetuses, the degree of apoptosis and cell proliferation, and the activity of molecules such as caspases 3 and 8, the NF-κB, (RelA), IκBα in some target embryonic organs shortly after exposure to embryopathic stresses.

Results : It is proposed that the possible essential function of TNF-α may be to prevent the birth of offspring with structural anomalies.

Conclusions : TNF-α will boost death signaling to kill the embryo if initial events (damages) triggered by detrimental stimuli may culminate in structural anomalies, and stimulate protective mechanisms if the repair of these damages may prevent maldevelopment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terranova PF, Hunter VJ, Roby KF, Hunt JS: Tumor necrosis factor-α in the female reproductive tract. Proc Soc Exp Biol Med 1995;209:325–342

    PubMed  Google Scholar 

  2. Kohchi C, Noguchi K, Tanabe Y, Mizuno DI, Soma GI: Constitutive expression of TNF-α and-β genes in mouse embryo: Roles of cytokines as regulator and effector on development. Int J Biochem 1994;26:111–119

    PubMed  Google Scholar 

  3. Chaouat G, Menu E, Wegmann TG: Role of lymphokines of the CSF family and of TNF, gamma interferon and IL-2 in placental growth and fetal survival studied in two murine models of spontaneous resorptions. In Cellular and Molecular Biology of the Maternal-Fetal Relationship,G Chaouat, JF Mowbray (eds), Paris, INSERM/John Libbey Eurotext, 1991, pp 91–104

    Google Scholar 

  4. Gendron RL, Nestel FP, Lapp WS, Baines MG: Lipopolysaccharide-induced fetal resorption in mice is associated with the intrauterine production of tumor necrosis factor-alpha. J Reprod Fert 1990;90:395–402

    Google Scholar 

  5. Tangri S, Raghupathy R: Expression of cytokines in placentas of mice undergoing immunologically mediated spontaneous fetal resorptions. Biol Reprod 1993;49:850–856

    PubMed  Google Scholar 

  6. Romero R, Manogue KH, Mitchell MD, Wu YK, Oyarzun E, Hobbins JC, Cerami A: Infection and labor. IV. Cachectin-tumor necrosis factor in the amniotic fluid of women with intraamniotic infection and preterm labor. Am J Obstet Gynecol 1989;161:336–341

    PubMed  Google Scholar 

  7. Clark DA, Arck PC, Chaouat G: Why did your mother reject you? Immunogenetic determinants of the response to environmental selective pressure expressed at the uterine level. Am J Reprod Immunol 1999;41:5–22

    PubMed  Google Scholar 

  8. Raghupathy R: Pregnancy: Success and failure within the Th1/Th2/Th3 paradigm. Semin Immunol 2001;13:219–227

    PubMed  Google Scholar 

  9. Gorivodsky M, Zemliak I, Orenstein H, Savion S, Fein A, Torchinsky A, Toder V: Tumor necrosis factor alpha mRNA and protein expression in the uteroplacental unit of mice with pregnancy loss. J Immunol 1998;160:4280–4288

    PubMed  Google Scholar 

  10. Arck PC, Meroli FS, Manuel J, Chaouat G, Clark DA: Stress-triggered abortion: Inhibition of protective suppression and promotion of tumor necrosis factor-α (TNF-α) release as a mechanism triggering resorptions in mice. Am J Reprod Immunol 1995;33:74–80

    PubMed  Google Scholar 

  11. Torchinsky A, Toder V, Carp H, Orenstein H, Fein A: In vivo evidence for the existence of a threshold for hyperglycemia-induced major fetal malformations: Relevance to the etiology of diabetic teratogenesis. Early Pregnancy 1997;3:27–33

    PubMed  Google Scholar 

  12. Fein A, Kostina E, Savion S, Orenstein H, Shepshelovich J, Ornoy A, Torchinsky A, Toder V: Expression of tumor necrosis factor-α in the uteroplacental unit of diabetic mice: Effect of maternal immunopotentiation. Am J Reprod Immunol 2001;46:161–168

    PubMed  Google Scholar 

  13. Pampfer S: Apoptosis in rodent peri-implantation embryos: Differential susceptibility of inner cell mass and trophectoderm cell lineages: A review. Placenta 2000;21 Suppl A:S3–10

    PubMed  Google Scholar 

  14. Pampfer S: Dysregulation of the cytokine network in the uterus of the diabetic rat. Am J Reprod Immunol 2001;45:375–81

    PubMed  Google Scholar 

  15. Ivnitsky I, Torchinsky A, Gorivodsky M, Zemliak I, Orenstein H, Savion S, Shepshelovich J, Carp H, Fein A, Toder V: TNF-alpha expression in embryos exposed to a teratogen. Am J Reprod Immunol 1998;40:431–440

    PubMed  Google Scholar 

  16. Beyaert R, Fiers W: Tumor necrosis factor and lymphotoxin. Cytokines 1998;24:335–359

    Google Scholar 

  17. Clark DA, Chaouat G, Gorczynsky RM: Thinking outside the box: Mechanisms of environmental selective pressures on the outcome of the materno-fetal relationship. Am J Reprod Immunol 2002;47:275–282

    PubMed  Google Scholar 

  18. Robaye B, Mosselmans R, Fiers W, Dumont JE, Galand P: Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am J Pathol 1991;138:447–453

    PubMed  Google Scholar 

  19. Jacobson MD, Weil M, Raff MC: Programmed cell death in animal development. Cell 1997;88:347–354

    Article  PubMed  Google Scholar 

  20. Vaux DL, Korsmeyer SJ: Cell death in development. Cell 1999;96:245–254

    PubMed  Google Scholar 

  21. Savion S, Lepsky E, Orenstein H, Carp H, Shepshelovich J, Torchinsky A, Fein A, Toder V: Apoptosis in the uterus of mice with pregnancy loss. Am J Reprod Immunol 2002;47:118–127

    PubMed  Google Scholar 

  22. Knudsen TV: Cell death. In Drug Toxicity in Embryonic Development I, RJ Kavlock, GP Daston (eds), Berlin, Springer-Verlag, 1997, pp 211–244

    Google Scholar 

  23. Mirkes PE: 2001 Warkany lecture: To die or not to die, the role of apoptosis in normal and abnormal mammalian development. Teratology 2002;65:228–239

    PubMed  Google Scholar 

  24. Green DR: Apoptotic pathways: The roads to ruin. Cell 1998;94:695–698

    Article  PubMed  Google Scholar 

  25. Pomerantz JL, Baltimore D: Signal transduction. A cellular rescue team. Nature 2000;406:26–29

    PubMed  Google Scholar 

  26. Idriss HT, Naismith JH: TNF alpha and the TNF receptor superfamily: Structure-function relationship(s). Microsc Res Tech 2000;50:184–195

    PubMed  Google Scholar 

  27. Baud V, Karin M: Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001;11:372–377

    PubMed  Google Scholar 

  28. Menkes B, Sandor S, Ilies A: Cell death in teratogenesis. In Advances in Teratology, DH Woollam (ed), New York, Academic Press, 1970, pp 169–215

    Google Scholar 

  29. Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, Vayssiere JL: TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 1998;17:1639–1651

    PubMed  Google Scholar 

  30. Baker SJ, Reddy EP: Modulation of life and death by the TNF receptor superfamily. Oncogene 1998;17:3261–3270

    PubMed  Google Scholar 

  31. Chang HY, Yang X: Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 2000;64:821–846

    PubMed  Google Scholar 

  32. Adrain C, Martin SJ: The mitochondrial apoptosome: A killer unleashed by the cytochrome seas. Trends Biochem Sci 2001;26:390–397

    PubMed  Google Scholar 

  33. Tsujimoto Y, Shimizu S: Bcl-2 family: Life-or-death switch. FEBS Lett 2000;466:6–10

    PubMed  Google Scholar 

  34. Gupta S: Molecular steps of tumor necrosis factor receptor-mediated apoptosis. Current Mol Med 2001;1:317–324

    Google Scholar 

  35. Cai Z, Capoulade C, Moyret-Lalle C, Amor-Gueret M, Feunteun J, Larsen AK, Paillerets BB-d, Chouaib S: Resistance of MCF7 human breast carcinoma cells to TNF-induced cell death is associated with loss of p53 function. Oncogene. 1997;15:2817–2826

    PubMed  Google Scholar 

  36. Rokhlin OW, Gudkov AV, Kwek S, Glover RA, Gewies AS, Cohen MB: p53 is involved in tumor necrosis factor-α-induced apoptosis in the human prostatic carcinoma cell line LNCaP. Oncogene 2000;19:1959–1968

    PubMed  Google Scholar 

  37. Vousden KH: p53: Death star. Cell 2000;103:692–694

    Google Scholar 

  38. Venters HD, Dantzer R, Kelley KW: A new concept in neurodegeneration: TNFα is a silencer of survival signals. Trends Neurosci 2000;23:175–180

    PubMed  Google Scholar 

  39. Rutanen E-M: Insulin-like growth factors in obstetrics. Curr Opin Obstet Gynecol 2000;12:163–168

    PubMed  Google Scholar 

  40. van Kleffens M, Groffen C, Lindenbergh-Kortleve DJ, van Neck JW, González-Parra S, Dits N, Zwarthoff EC, Drop SLS: The IGF system during fetal-placental development of the mouse. Mol Cell Endocrin 1998;140:129–135

    Google Scholar 

  41. Coulam CB: Understanding the immunology of pregnancy and applying it to treatment of recurrent pregnancy loss. Early Pregnancy 2000;IV:019–029

    Google Scholar 

  42. Torchinsky A, Ivnitsky I, Savion S, Shepshelovich J, Gorivodsky M, Fein A, Carp H, Schwartz D, Frankel J, Rotter V, Toder V: Cellular events and the pattern of p53 protein expression following cyclophosphamide-initiated cell death in various organs of developing embryo. Teratog Carcinog Mutagen 1999;19:353–367

    PubMed  Google Scholar 

  43. Chen FE, Ghosh G: Regulation of DNA binding by Rel/NF-κB transcription factors: Structural views. Oncogene 1999;18:6845–6852

    PubMed  Google Scholar 

  44. Karin M: Minireview. The beginning of the end: IkB kinase (IKK) and NF-κB activation. J Biol Chem 1999;274:27339–27342

    PubMed  Google Scholar 

  45. PahlHL: Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999;18:6853–6866

    PubMed  Google Scholar 

  46. Karin M, Lin A: NF-κB at the crossroad of life and death. Nut Immunol 2002;3:221–227

    Google Scholar 

  47. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D: Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995;376:167–170

    Article  PubMed  Google Scholar 

  48. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Jonson R, Karin M: The IKKβ subunit of IκB kinase (IKK) is essential for Nuclear Factor κB activation and prevention of apoptosis. J Exp Med 1999;189:1839–1845

    PubMed  Google Scholar 

  49. Li Q, Van Antwerp D, Mercuric F, Lee KF, Verma IM: Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 1999;284:321–325

    Google Scholar 

  50. Doi TS, Marino MW, Takahashi T, Yoshida T, Sakakura T, Old LJ, Obata Y: Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc Natl Acad Sci USA 1999;96:2994–2999

    PubMed  Google Scholar 

  51. Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL, Goeddel DV: Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 1999;10:421–429

    PubMed  Google Scholar 

  52. RosenfeldME, PrichardL, ShiojiriN, FaustoN: Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR-1 double knockout mice. Am J Pathol 2000;56:997–1007

    Google Scholar 

  53. Torchinsky A, Lishanski L, Wolstein O, Shepshelovich J, Orenstein H, Savion S, Zaslavsky Z, Carp H, Brill A, Dikstein R, Toder V, Fein A: NF-kappaB DNA-binding activity in embryos responding to a teratogen, cyclophosphamide. BMC Dev Biol 2002;2(1):2

    PubMed  Google Scholar 

  54. Barkett M, Gilmore TD: Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 1999;18:6910–6924

    PubMed  Google Scholar 

  55. Deveraux QL, Reed JC: IAP family proteins-suppressor of apoptosis. Genes Dev 1999;13:239–252

    PubMed  Google Scholar 

  56. Goyal L: Cell death inhibition: Keeping caspases in check. Cell 2001;104:805–808

    PubMed  Google Scholar 

  57. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer J-L, Schröter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J: Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190–195

    PubMed  Google Scholar 

  58. Mirkes PE, Little SA: Teratogen-induced cell death in postimplantation mouse embryos: differential tissue sensitivity and hallmarks of apoptosis. Cell Death Differ 1998;5:592–600

    PubMed  Google Scholar 

  59. Mirkes PE, Little SA: Cytochrome c release from mitochondria of early postimplantation murine embryos exposed to 4-hydroperoxycyclophosphamide, heat shock, and staurosporine. Toxicol Appl Pharmacol 2000;162:197–206

    PubMed  Google Scholar 

  60. Aggarwal BB: Apoptosis and nuclear factor-kappaB: A tale of association and dissociation. Biochem Pharmacol 2000;6:1033–1039

    Google Scholar 

  61. Sharova L, Sura P, Smith BJ, Gogal RM Jr, Sharov AA, Ward DL, Holladay SD: Nonspecific stimulation of the maternal immune system. II. Effects on gene expression in the fetus. Teratology 2000;62:420–428

    PubMed  Google Scholar 

  62. Moley KH: Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women. Trends Endocrinol Metab 2001;12:78–82

    PubMed  Google Scholar 

  63. Wilson JG: Current status of teratology: general principles and mechanisms derived from animal studies. In Handbook of Teratology: General Principles and Etiology, JG Wilson, FC Fraser (eds), New York, Plenum Press, 1977, Vol. 1, pp 47–74

    Google Scholar 

  64. Campbell KJ, Chapman NR, Perkins ND: UV stimulation induces nuclear factor kappaB (NF-kappaB) DNA-binding activity but not transcriptional activation. Biochem Soc Trans 2001;29(Pt6):688–691

    PubMed  Google Scholar 

  65. Ryan KM, Ernst MK, Rice NR, Vousden KH: Role of NF-kappaB in p53-mediated programmed cell death. Nature 2000;404:892–897

    PubMed  Google Scholar 

  66. Wubah JA, Ibrahim MM, Gao X, Nguyen D, Pisano MM, Knudsen TB: Teratogen-induced eye defects mediated by 53-dependent apoptosis. Curr Bio 1996;6:60–69

    Google Scholar 

  67. Nicol CJ, Harrison ML, Laposa RR, Gimelshtein I, Wells PG: A teratologic suppresser role for p53 in benzo[a]pyrene-treated transgenic p53-deficient mice. Nat Genet 1995;10:181–187

    PubMed  Google Scholar 

  68. Moallem SA, Hales BF: The role of p53 and cell death by apoptosis and necrosis in 4-hydroperoxicyclophosphamide-induced limb malformations. Development 1998;125:3225–3234

    PubMed  Google Scholar 

  69. Norimura T, Nomoto S, Katsuki M, Gondo Y, Kondo S: p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nat Med 1996;2:577–580

    PubMed  Google Scholar 

  70. Wang B: Involvement of p53-dependent apoptosis in radiation teratogenesis and in the radioadaptive response in the late organogenesis of mice. J Radiat Res (Tokyo) 2001;42:1–10

    Google Scholar 

  71. Choi J, Donehower LA: p53 in embryonic development: Maintaining a fine balance. Cell Mol Life Sci 1999;55:38–47

    PubMed  Google Scholar 

  72. Snow MHL, Tam PPL: Is compensatory growth a complicating factor in mouse teratology. Nature 1979;279:555–557

    PubMed  Google Scholar 

  73. Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-kappa B in cell growth regulation. Am J Pathol 2001;159:387–397

    PubMed  Google Scholar 

  74. Tibbles LA, Woodgett R: The stress-activated protein kinase pathways. Cell Mol Life Sci 1999;55:1230–1254

    PubMed  Google Scholar 

  75. Wells PG, Kim PM, Laposa RR, Nicol CJ, Parman T, Winn LM: Oxidative damage in chemical teratogenesis. Mutat Res 1997;396:65–78

    PubMed  Google Scholar 

  76. Pasparakis M, Alexopoulou L, Episkopou V, Kollias G: Immune and inflammatory responses in TNF alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 1996;184:1397–1411

    PubMed  Google Scholar 

  77. Marino MW, Dunn A, Grail D, Inglese M, Noguchi Y, Richards E, Jungbluth A, Wada H, Moore M, Williamson B, Basu S, Old LJ: Characterization of tumor necrosis factor-deficient mice. Proc Natl Acad Sci USA 1997;94:8093–809

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toder, V., Fein, A., Carp, H. et al. TNF-α in Pregnancy Loss and Embryo Maldevelopment: A Mediator of Detrimental Stimuli or a Protector of the Fetoplacental Unit?. J Assist Reprod Genet 20, 73–81 (2003). https://doi.org/10.1023/A:1021740108284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021740108284

Navigation