Skip to main content
Log in

New Method to Calculate Thermodynamic and Transport Properties of a Multi-Temperature Plasma: Application to N2 Plasma

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Multi-temperature thermal plasmas have often to be considered to account for the nonequilibrium effects. Recently André et al. have developed the calculation of concentrations in a multi-temperature plasma by artificially separating the partition functions into a product by assuming that the excitation energies are those of the lower levels (electronic, vibration, and rotation). However, at equilibrium, differences, increasing with temperature, can be observed between partition functions calculated rigorously and with their method. This paper presents a modified method where it has been assumed that the preponderant rotational energy is that of the vibrational level v=0 of the ground electronic state and the preponderant vibrational energy is that of the ground electronic state. The internal partition function can then be expressed as a product of series expressions. At equilibrium for N 2 and N +2 partition functions the values calculated with our method differ by less than 0.1% from those calculated rigorously. The calculation has been limited to three temperatures: heavy species Th , electrons Te , and vibrational T v temperatures. The plasma composition has been calculated by minimizing the Gibbs free enthalpy with the steepest descent numerical technique. The nonequilibrium properties have been calculated using the method of Devoto, modified by Bonnefoi and Aubreton. The ratio θ=Te/Th was varied between 1 and 2 as well as the ratio θ v =T v /T h for a nitrogen plasma. At equilibrium the corresponding equilibrium transport properties of Ar and N 2 are in good agreement with those of Devoto and Murphy except for T>10,000 K where we used a different interaction potential for N–N + . The effects of θv and θe on thermodynamic and transport properties of N 2 are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Fauchais and M. Vardelle, Pure Appl. Chem. 66(6), 1247–1258 (1994).

    Google Scholar 

  2. M. Back and A. Gruchov, Pure Appl. Chem. 64(5), 665–677 (1992).

    Google Scholar 

  3. G. Angblom and K. Falck, Welding in the World 30(7/8), 201–209 (1993).

    Google Scholar 

  4. D. Neuschutz, H. O. Rossener, and H. J. Bebber, Iron and Steel Engineer, May, 27–33 (1995).

  5. N. Barcza, “Application of plasma technology to steel processing,” in Plasma Technology in Metallurgy, J. Feinman (ed.), Iron and Steel Soc. of AIME (1987).

  6. C. Oberlin, J. High Temp. Chem. Proc. 3, 719–732 (1994).

    Google Scholar 

  7. J. M. Baronnet, J. High Temp. Chem. Proc. 1(4), 577–598 (1992).

    Google Scholar 

  8. F. Gitzhofer, Pure Appl. Chem. 68(5), 1113–1120 (1996).

    Google Scholar 

  9. P. Fauchais, A. Vardelle, and A. Denoirjean, “Reactive thermal plasmas: deposition, ultrafine particles synthesis,” 9th International Conference on Plasma Surface Engineering, Garmish, Partenkirschen, D, Sept. 1996, accepted in J. Surf. Coat. Tech.

  10. M. Vardelle, A. Vardelle, C. Trassy, and P. Fauchais, Plasma Chem. Plasma Process. 11(2), 185–201 (1991).

    Google Scholar 

  11. P. Fauchais, J. F. Coudert, and M. Vardelle, “Diagnostics in thermal plasma processing,” in Plasma Diagnostics, Vol. 1, O. Auciello and D. L. Flamm (eds.), Academic Press, New York (1989), pp. 349–446.

    Google Scholar 

  12. J. R. Fincke, Pure Appl. Chem. 68(5), 1001–1006 (1996).

    Google Scholar 

  13. J. Szekely and R. C. Westhoff, “Recent advances in the mathematical modeling of transport phenomena in plasma systems,” Thermal Plasma Applications, in Materials and Metallurgical Processing, N. El-Kaddah (ed.), The Minerals, Metals and Materials Society pp. 55–62.

  14. J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 12(2), 299–311 (1992).

    Google Scholar 

  15. C. Delalondre, S. Zahrai, and O. Simonin, in Heat and Mass Transfer under Thermal Plasma Conditions, P. Fauchais (ed.), (Begell House, N.Y., 1995), pp. 1–14.

    Google Scholar 

  16. P. C. Huang, J. Heberlein, and E. Pfender, Plasma Chem. Plasma Process. 15(1), 25–31 (1995).

    Google Scholar 

  17. M. Rahmane, G. Soucy, and M. I. Boulos, Plasma Chem. Plasma Process. 16(1), 169S–189S (1996).

    Google Scholar 

  18. M. I. Boulos, P. Fauchais, A. Vardelle, and E. Pfender, Fundamentals of plasma particle momentum and heat transfer, in Plasma Spraying: Theory and Applications, R. Suryanarayanan, ed., (world Scientific Publishing 1993), pp. 3–60.

  19. S. H. Storey and F. van Zeggeren, The Computation of Chemical Equilibria, Cambridge Univ. Press (1970).

  20. W. B. White, S. M. Johnson, G. B. Dantzig, J. Chem. Phys. 28, 751–763 (1958).

    Google Scholar 

  21. B. Pateyron, M. F. Elchinger, G. Delluc, and P. Fauchais, Plasma Chem. Plasma Process. 12(4), 421–448 (1992).

    Google Scholar 

  22. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York (1964).

    Google Scholar 

  23. S. Chapman and T. G. Cowling, Mathematical Theory of Non-uniform Gases, Cambridge University Press, London (1964).

    Google Scholar 

  24. R. S. Devoto, Phys. Fluids 29, 1230–1238 (1966).

    Google Scholar 

  25. R. S. Devoto, Phys. Fluids 10, 2105–2111 (1967).

    Google Scholar 

  26. C. Gorse, “Contribution to the calculation of transport properties of Ar-H2 and Ar-N2 mixtures” (in French), Thèse 3ème Cycle, Université de Limoges, France, Nb 75-10 (1975).

    Google Scholar 

  27. C. Bonnefoi, “Contribution to theoretical calculation of transport coefficients of a nitrogen plasma using the Chapman-Enskog method with the fourth approximation of Sonine polynomial expansion” (in French), Thèse de 3ème Cycle, Université de Limoges, France (1975).

    Google Scholar 

  28. J. Aubreton, “Study of thermodynamic and transport properties of thermal plasmas at equilibrium or out of equilibrium: application to Ar-H2 and Ar-O2 mixtures” (in French), Thèse d'Etat, Université de Limoges, France, 22 Février 1985.

    Google Scholar 

  29. J. N. Butler and R. S. Brokaw, J. Chem. Phys. 26(6), 1636–1642 (1957).

    Google Scholar 

  30. A. Eucken, Z. Phys. 14, 324–332 (1913).

    Google Scholar 

  31. C. H. Kruger, Phys. Fluids 13, 1737–1741 (1970).

    Google Scholar 

  32. J. F. Coudert, E. Bourdin, J. M. Baronnet, J. Rakowitz, and P. Fauchais, J. Phys., Colloq. 7,C7, 335–347 (1979).

    Google Scholar 

  33. H. Shindo, T. Inaba, and S. Imazu, J. Phys. D. 13, 805–813 (1980).

    Google Scholar 

  34. E. Pfender, “Thermal plasma-wall boundary layers,” Int. Seminar on Heat and Mass Transfer, Izmir, T. July (1994), P. Fauchais (ed.), (Begell House, N.Y., 1995), p. Begell House, N.Y. (1995), p. 223.

    Google Scholar 

  35. W. L. T. Chen, J. Heberlein, and E. Pfender. Plasma Chem. Plasma Process. 14(3), 317–332 (1994).

    Google Scholar 

  36. S. C. Snyder, L. D. Reynolds, G. Lassahn, J. R. Fincke, C. Shaw, and R. Kearney, Phys. Rev. E47, 1996–2005 (1993).

    Google Scholar 

  37. E. Richley and D. T. Tuma, J. Appl. Phys. 53(12), 8537–8542 (1982).

    Google Scholar 

  38. A. V. Potapov, High Temp. 4(1), 48–51 (1966).

    Google Scholar 

  39. R. S. Devoto, “The transport properties of a partially ionized monatomic gas,” Ph.D. Thesis, Department of Aeronautics and Astronautics, Stanford University (1964).

  40. R. M. Chmielski, “Transport properties of a non-equilibrium partially ionized gas,” Ph.D. Thesis, Department of Mechanical Engineering, Stanford University (1967).

  41. C. Bonnefoi, “Contribution to the study of solving methods of Boltzmann equation in a two-temperature plasma: example Ar-H2 mixture” (in French), Thèse d'Etat, Université de Limoges, France, 9 Mai 1983.

    Google Scholar 

  42. C. Bonnefoi, J. Aubreton, and J. Mexmain, Z. Naturforsch. A. 40A, 885–893 (1985).

    Google Scholar 

  43. P. Fauchais and J. F. Coudert, Rev. Gén. Therm. 35(413), 324–330 (1996).

    Google Scholar 

  44. P. André, M. Abbaoui, A. Lefort, and M. J. Parizet, Plasma Chem. Plasma Process. 16(3), 379–398 (1996).

    Google Scholar 

  45. J. Aubreton and P. Fauchais. Rev. Phys. Appl. 18, 51–62 (1983).

    Google Scholar 

  46. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constant of Diatomic Molecules, Van Nostrand Reinhold (1979).

  47. A. B. Murphy and C. J. Arundell, Plasma Chem. Plasma Process 14(4), 451–490 (1994).

    Google Scholar 

  48. M. Capitelli and R. S. Devoto, Phys. Fluids 16, 1835–1842 (1973).

    Google Scholar 

  49. J. R. Stallcop and H. Partridge, J. Chem. Phys. 95(9), 6429–6437 (1991).

    Google Scholar 

  50. J. M. Parson, P. E. Siska, and Y. T. Lee, J. Chem. Phys. 56, 1511–1518 (1972).

    Google Scholar 

  51. P. Kovitya, IEEE Trans. Plasma Sci. P.S.12, 38 (1984).

    Google Scholar 

  52. V. A. Belyaev, B. G. Brezhnev, and E. M. Erastov, Sov. Phys. JETP 27, 924 (1968).

    Google Scholar 

  53. M. Capitelli, R. Celiberto, and C. Gorse, Plasma Chem. Plasma Process. 16(2), 267S–302S (1996).

    Google Scholar 

  54. M. Pons, E. Blanquet, J. M. Dedulle, I. Garcon, R. Madar, and C. Bernard, J. Electrochem. Soc. 183(11), 3727–3735 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubreton, J., Elchinger, M.F. & Fauchais, P. New Method to Calculate Thermodynamic and Transport Properties of a Multi-Temperature Plasma: Application to N2 Plasma. Plasma Chemistry and Plasma Processing 18, 1–27 (1998). https://doi.org/10.1023/A:1021785125690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021785125690

Navigation