Skip to main content
Log in

Differential Metabolism of 1,8–Cineole in Insects

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In order to compare the metabolism of 1,8-cineole in the pyrgo beetle, Paropsisterna tigrina, three other herbivorous insect species, Faex nigroconspersa, Chrysophtharta bimaculata, and Oxyops vitiosa, were fed 1,8-cineole leaf diets. F. nigroconspersa adults excreted predominantly 9-hydroxy-1,8-cineole (36.2% of the volatile constituents) with some 2α-hydroxy-1,8-cineole (11.4%). In contrast, larvae excreted predominantly 2α-hydroxy-1,8-cineole (27.4%) and smaller proportions of 9-hydroxy-1,8-cineole (5.2%) and 3α-hydroxy-1,8-cineole (4.3%). C. bimaculata adults excreted predominantly 3α-hydroxy-1,8-cineole (16.5%). Oxyops vitiosa adults, on a lower 1,8-cineole diet, excreted predominantly 2α,9-dihydroxy-1,8-cineole (4.2%) and 2α-hydroxy-1,8-cineole (3.5%), with smaller proportions of 3α-hydroxy-1,8-cineole (1.1%) and 9-hydroxy-1,8-cineole (0.5%). This is the first reported occurrence of a dihydroxycineole as an insect metabolite. Gas chromatographic and mass spectral data for hydroxycineoles are recorded and interspecific metabolite variation discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boland, D. J., Brophy, J. J., and House, A. P. N. (Eds.) 1991. Eucalyptus Leaf Oils: Use, Chemistry, Distillation and Marketing, ACIAR/CSIRO, Inkata, Melbourne.

    Google Scholar 

  • Boyle, R., McLean, S., and Davies, N. W. 2000. Biotransformation of 1,8-cineole in the brushtail possum (Trichosurus vulpecula). Xenobiotica 30:915-932.

    Google Scholar 

  • Brophy, J. J. 1999. Potentially commercial melaleucas, pp. 247-274, in I. A. Southwell and R. F. Lowe (Eds.). Tea Tree, the Genus Melaleuca, Vol 9, in R. Hardman (ed.). Medicinal and Aromatic Plants—Industrial Profiles. Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Bull, S. D., Carman, R. M., Carrick, F. N., and Klika, K. D. 1993. 7-Hydroxy-1,8-cineole and 7-cineolic acid. Two new possum urinary metabolites. Aust. J. Chem. 46:441-447.

    Google Scholar 

  • Carman, R. M. and Klika, K. D. 1992. Partially racemic compounds as brushtail possum urinary metabolites. Aust. J. Chem. 45:651-657.

    Google Scholar 

  • Carman, R. M. and Rayner, A. C. 1994. 2 α,4-Dihydroxy-1,8-cineole. A new possum urinary metabolite. Aust. J. Chem. 47:2087-2097.

    Google Scholar 

  • Carman, R. M., MacRae, I. C., and Perkins, M. V. 1986. The oxidation of 1,8-cineole by Pseudomonas flava. Aust. J. Chem. 39:1739-1746.

    Google Scholar 

  • Carman, R. M., Garner, A. C., and Klika, K. D. 1994. 2,9-Dihydroxy and 2,10-dihydroxy-1,8-cineole. Two new possum urinary metabolites. Aust. J. Chem. 47:1509-1521.

    Google Scholar 

  • Center, T. D., Van, T. K., Rayachhetry, M., Buckingham, G. R., Dray, F. A., Wineriter, S. A., Purcell, M. F., and Pratt, P. D. 2000. Field colonization of the melaleuca snout beetle (Oxyops vitiosa) in south Florida. Biol. Control 19:112-123.

    Google Scholar 

  • De Little, D. W. 1983. Life cycle and aspects of the biology of Tasmanian eucalyptus leaf beetle Chrysophtharta bimaculata (Olivier) [Coleoptera: Chrysomelidae]. J. Aust. Entomol. Soc. 22:15-18.

    Google Scholar 

  • Eberhard, I. H., McNamara, J., Pearse, R. J., and Southwell, I. A. 1975. Ingestion and excretion of Euc. punctata and its essential oil by the koala. Aust. J. Zool. 23:169-179.

    Google Scholar 

  • Fletcher, M. T., Lowe, L. M., Kitching, W., and Konig, W. A. 2000. Chemistry of Leichhardt's grasshopper, Petasida ephippigera, and its host plants, Pityrodia jamesii, P. ternifolia and P. pungens. J. Chem. Ecol. 26:2275-2290.

    Google Scholar 

  • Flynn, T. M., and Southwell, I. A. 1979. 1,3-Dimethyl-2-oxabicyclo [2. 2. 2]-octane-3-methanol and 1,3-dimethyl-2-oxabicyclo [2.2.2]-octane-3-carboxylic acid, urinary metabolites of 1,8-cineole. Aust. J. Chem. 32:2093-2095.

    Google Scholar 

  • Gershenzon, J. and Croteau, R. 1991. Terpenoids, pp. 165-219, in G. A. Rosenthal and M. Berenbaum (Eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Vol I: The Chemical Participants, 2nd ed., Academic Press, San Diego, California.

    Google Scholar 

  • Gomez, N. E., Witte, L., and Hartmann, T. 1999. Chemical defense in larval tortoise beetles: Essential oil composition of fecal shields of Eurypedus nigrosignata and foliage of its host plant, Cordia curassavica. J. Chem. Ecol. 25:1007-1027.

    Google Scholar 

  • Greaves, R. 1966. Insect defoliation of eucalypt regrowth in the Florentine valley, Tasmania. Appita 19:119-126.

    Google Scholar 

  • Klocke, J. A., Darlington, M. V., and Balandrin, M. F. 1987. 1,8-Cineole (eucalyptol), a mosquito feeding and ovipositional repellent from volatile oil of Hemizonia fitchii (Asteraceae). J. Chem. Ecol. 13:2131-2141.

    Google Scholar 

  • Liu, W.-G. and Rosazza, J. P. N. 1990. Stereospecific hydroxylation of 1,8-cineole using a microbial biocatalyst. Tetrahedron Lett. 31:2833-2836.

    Google Scholar 

  • MacRae, I. C., Alberts, V., Carman, R. M., and Shaw, I. M. 1979. Products of 1,8-cineole oxidation by a pseudomonad. Aust. J. Chem. 32:917-922.

    Google Scholar 

  • Maddox, C. D. 1996. Aspects of the biology of Paropsisterna tigrina. MSc thesis. University of Queensland, Brisbane.

    Google Scholar 

  • Madyastha, K. M. and Chadha, A. 1986. Metabolism of 1,8-cineole in rat: its effects on liver and lung microsomal cytochrome P-450 systems. Bull. Environ. Contam. Toxicol. 37:759-766.

    Google Scholar 

  • Miyazawa, M., Kameoka, H., Morinaga, K., Negoro, K., and Mura, N. 1989. Hydroxycineole: four new metabolites of 1,8-cineole in rabbits. J. Agric. Food Chem. 37:222-226.

    Google Scholar 

  • Miyazawa, M., Nakaoka, H., Hyakamachi, M., and Kameoka, H. 1991. Biotransformation of 1,8-cineole to (+)-2-endo-hydroxy-1,8-cineole by Glomerella cinqulata. Chem. Express 6:667-670.

    Google Scholar 

  • Miyazawa, M., Shindo, M., and Shimada, T. 2001. Oxidation of 1,8-cineole, the monoterpenoid cyclic ether originated from Eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Drug Metab. Dispos. 29:200-205.

    Google Scholar 

  • Morrow, P. A. and Fox, L. R. 1980. Effects of variation in Eucalyptus oil yield on insect growth and grazing damage. Oecologia 45:209-219.

    Google Scholar 

  • Nishimura, H., Noma, Y., and Mizutani, J. 1982. Eucalyptus as biomass. Novel compounds from microbial conversion of 1,8-cineole. Agric. Biol. Chem. 46:2601-2604.

    Google Scholar 

  • Obeng-Ofori, D., Reichmuth, C. H., Bekele, J., and Hassanali, A. 1997. Biological activity of 1,8-cineole, a major component of essential oil of Ocimum kenyense (Ayobangira) against stored product beetles. J. Appl. Entomol. 121:237-243.

    Google Scholar 

  • Ohmart, C. P. and Larsson, S. 1989. Evidence for absorption of Eucalyptus essential oils by Paropsis atomaria Olivier (Coleoptera: Chrysomelidae). J. Aust. Entomol. Soc. 28:210-205.

    Google Scholar 

  • Schmidt, S., Walter, G. H., and Moore, C. J. 2000. Host plant adaptations in myrtaceous-feeding Pergid sawflies: essential oils and the morphology and behaviour of Pergagrapta larvae (Hymenoptera, Symphyta, Pergidae). Biol. J. Linn. Soc. 70:15-26.

    Google Scholar 

  • Southwell, I. A. 1975. Novel urinary monoterpenoid lactones. Tetrahedron Lett. 16:1885-1988.

    Google Scholar 

  • Southwell, I. A. 1999a. Introduction, pp. 1-7, in I. A. Southwell and R. F. Lowe (Eds.). Tea Tree, the Genus Melaleuca, Vol 9, in R. Hardman (ed.). Medicinal and Aromatic Plants—Industrial Profiles. Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Southwell, I. A. 1999b. Tea tree constituents, pp. 29-62, in I. A. Southwell and R. F. Lowe (Eds.). Tea Tree, the Genus Melaleuca, Vol 9, in R. Hardman (ed.). Medicinal and Aromatic Plants—Industrial Profiles. Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Southwell, I. A., Flynn, T. M., and Degabriele, R. 1980. Metabolism of α-and β-pinene, p-cymene and 1,8-cineole in the brushtail possum, Trichosurus vulpecula. Xenobiotica 10:17-23.

    Google Scholar 

  • Southwell, I. A., Maddox, C. D. A., and Zalucki, M. P. 1995. Metabolism of 1,8-cineole in tea tree (Melaleuca alternifolia and M. linariifolia) by pyrgo beetle (Paropsisterna tigrina). J. Chem. Ecol. 21:439-453.

    Google Scholar 

  • Tisserand, R. and Balacs, T. 1995. Essential Oil Safety. Churchill Livingston, Edinburgh, p. 52.

    Google Scholar 

  • Turner, C. E., Center, T. D., Burrows, D. W., and Buckingham, G. R. 1998. Ecology and management of Melaleuca quinquenervia, an invader of wetlands in Florida, USA. Wetl. Ecol. Manage. 5:165-178.

    Google Scholar 

  • Wheeler, G. S. 2001. Host plant quality factors that influence the growth and development of Oxyops vitiosa, a biological control agent of Melaleuca quinquenervia. Biol. Control 22:256-264.

    Google Scholar 

  • Wheeler, G. S., Massey, L. M., and Southwell, I. A. 2002. Anti-predator defense of biological control agent Oxyops vitiosa is mediated by plant volatiles sequestered from their host plant Melaleuca quinquenervia. J. Chem. Ecol. 28:297-315.

    Google Scholar 

  • Williams, D. R., Trudgill, P. W., and Taylor, D. G. 1989. Metabolism of 1,8-cineole by a Rhodococcus species: ring cleavage reactions. J. Gen. Microbiol. 135:1957-1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Southwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Southwell, I.A., Russell, M.F., Maddox, C.D. et al. Differential Metabolism of 1,8–Cineole in Insects. J Chem Ecol 29, 83–94 (2003). https://doi.org/10.1023/A:1021976513603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021976513603

Navigation