Skip to main content
Log in

Phagocytosis and Phagosomal Fate of Surface-Modified Microparticles in Dendritic Cells and Macrophages

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We compared cationic, polyamine-coated microparticles (MPs) and anionic, protein-coated MPs with respect to their phagocytosis and phagosomal fate in dendritic cells (DCs) and macrophages (MΦ).

Methods. Polystyrene MPs were surface modified by covalent coupling with fluorescein isothiocyanate-labeled polyamines or proteins. Phagocytosis of MP and the pH of their intracellular microenvironment was assessed in human-derived DCs and MΦ in a fluorescence plate reader. Visualization of MP phagocytosis in DCs was performed by transmission electron microscopy.

Results. Phagocytosis of bovine serum albumin-coated MPs was low with significant differences between DC and MΦ, whereas phagocytosis of IgG-coated MPs was significantly enhanced in both cell types. Phagocytosis of both particle types resulted in an acidified phagosomal microenvironment (pH 4.6-5.1). In contrast, cationic, polyamine-coated MPs were equally phagocytosed by DCs and MΦ to a high extent and showed lower degrees of acidification (pH 6.0-6.8) in the phagosomal microenvironment. Transmission electron microscopy examination demonstrated all phagocytosed particles to be surrounded by a phagosomal membrane, which was more tightly apposed to the surface of cationic MPs and more loosely to bovine serum albumin-coated MPs.

Conclusion. Phagocytosis of cationic, polyamine-coated MPs is suggested to lead to diminished phagosomal acidification. Thus, cationic MP are potential carriers that may display beneficial features for the intracellular delivery of immunomodulating therapeutics and their protection against lysosomal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Raychaudhuri and K. L. Rock. Fully mobilizing host defense: building better vaccines. Nat. Biotech. 16:1025-1031 (1998).

    Google Scholar 

  2. E. Walter, D. Dreher, M. Kok, L. Thiele, S. G. Kiama, P. Gehr, and H. P. Merkle. Hydrophilic poly(DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J. Control. Release 76:149-168 (2001).

    Google Scholar 

  3. S. Prior, B. Gander, N. Blarer, H. P. Merkle, M. L. Subria, J. M. Irache, and C. Gamazo. In vitro phagocytosis and monocyte-macrophage activation with poly(lactide) and poly(lactide-co-glycolide) microspheres. Eur. J. Pharm. Sci. 15:197-207 (2002).

    Google Scholar 

  4. J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and K. Palucka. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767-811 (2000).

    Google Scholar 

  5. A. Aderem and D. M. Underhill. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17:593-623 (1999).

    Google Scholar 

  6. J. Banchereau and R. M. Steinman. Dendritic cells and the control of immunity. Nature 392:245-252 (1998).

    Google Scholar 

  7. F. D. Finkelman, A. Lees, R. Birnbaum, W. C. Gause, and S. C. Morris. Dendritic cells can present antigens in vivo in a tolerogenic or immunogenic fashion. J. Immunol. 157:1406-1414 (1996).

    Google Scholar 

  8. Y. Men, H. Tamber, R. Audran, B. Gander, and G. Corradin. Induction of a cytotoxic T lymphocyte response by immunization with a malaria specific CTL peptide entrapped in biodegradable polymer microspheres. Vaccine 15:1405-1412 (1997).

    Google Scholar 

  9. K. Peter, Y. Men, G. Pantaleo, B. Gander, and G. Corradin. Induction of a cytotoxic T-cell response to HIV-1 proteins with short synthetic peptides and human compatible adjuvants. Vaccine 19:4121-4129 (2001).

    Google Scholar 

  10. Z. Shen, G. Reznikoff, G. Dranoff, and K. L. Rock. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158:2723-2730 (1997).

    Google Scholar 

  11. M. Svensson, B. Stockinger, and M. J. Wick. Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells. J. Immunol. 158:4229-4236 (1997).

    Google Scholar 

  12. C. Scheicher, M. Mehlig, H. P. Dienes, and K. Reske. Uptake of microparticle-adsorbed protein antigen by bone marrow-derived dendritic cells results in up-regulation of interleukin-1 alpha and interleukin-12 p40/p35 and triggers prolonged, efficient antigen presentation. Eur. J. Immunol. 25:1566-1572 (1995).

    Google Scholar 

  13. M. Kovacsovics-Bankowski and K. L. Rock. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267:243-246 (1995).

    Google Scholar 

  14. L. Thiele, B. Rothen-Rutishauser, S. Jilek, H. Wunderli-Allenspach, H. P. Merkle, and E. Walter. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release 76:59-71 (2001).

    Google Scholar 

  15. Y. Tabata and Y. Ikada. Phagocytosis of polymer microspheres by macrophages. Adv. Polymer Sci. 94:107-141 (1990).

    Google Scholar 

  16. H. Ayhan, A. Tuncel, N. Bor, and E. Piskin. Phagocytosis of monosize polystyrene-based microspheres having different size and surface properties. J. Biomat. Sci. 7:329-342 (1995).

    Google Scholar 

  17. M. Singh, M. Briones, G. Ott, and D. O'Hagan. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA 97:811-816 (2000).

    Google Scholar 

  18. S. G. Kiama, L. Cochand, L. Karlsson, L. P. Nicod, and P. Gehr. Evaluation of phagocytic activity in human monocyte-derived dendritic cells. J. Aerosol Med. 14:289-299 (2001).

    Google Scholar 

  19. C. R. Sousa and J. M. Austyn. Phagocytosis of antigens by Langerhans cells. Adv. Exp. Med. Biol. 329:199-204 (1993).

    Google Scholar 

  20. J. A. Swanson and S. C. Baer. Phagocytosis by zippers and triggers. Trends Cell Biol. 5:89-93 (1995).

    Google Scholar 

  21. C. De Chastellier and L. Thilo. Phagosome maturation and fusion with lysosomes in relation to surface property and size of the phagocytic particle. Eur. J. Cell Biol. 74:49-62 (1997).

    Google Scholar 

  22. J. A. Swanson and C. Watts. Macropinocytosis. Trends Cell Biol. 5:424-428 (1995).

    Google Scholar 

  23. E. Walter and H. P. Merkle. Microparticle-mediated transfection of non-phagocytic cells in vitro. J. Drug Target. 10:11-21 (2002).

    Google Scholar 

  24. K. S. Denis-Mize, M. Dupuis, M. L. MacKichan, M. Singh, B. Doe, D. O'Hagan, J. B. Ulmer, J. J. Donnelly, D. M. McDonald, and G. Ott. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther. 7:2105-2112 (2000).

    Google Scholar 

  25. M. J. Mahoney and W. M. Saltzman. Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nat. Biotech. 19:934-939 (2001).

    Google Scholar 

  26. J. P. Behr. Gene transfer with amino lipids and amino polymers. Compt. Rend. Seanc. Soc. Biol. 190:33-38 (1996).

    Google Scholar 

  27. A. Lorenzen and S. W. Kennedy. A fluorescence-based protein assay for use with a microplate reader. Anal. Biochem. 214:346-348 (1993).

    Google Scholar 

  28. T. Arvinte, A. Cudd, and A. F. Drake. The structure and mechanism of formation of human calcitonin fibrils. J. Biol. Chem. 268:6415-6422 (1993).

    Google Scholar 

  29. R. H. Müller, S. S. Davis, L. Illum, and E. Mak. Particle Charge and Surface Hydrophobicity of Colloidal Carriers. In G. Gregoriedes, J. Senior, and G. Poste (eds.), Targeting of drugs with synthetic system, Plenum, New York 1986, pp. 239-263.

    Google Scholar 

  30. F. Sallusto, M. Cella, C. Danieli, and A. Lanzavecchia. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182:389-400 (1995).

    Google Scholar 

  31. F. Gantner, R. Kupferschmidt, C. Schudt, A. Wendel, and A. Hatzelmann. In vitro differentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-alpha release by PDE inhibitors. Br. J. Pharmacol. 121:221-231 (1997).

    Google Scholar 

  32. L. Cochand, P. Isler, F. Songeon, and L. P. Nicod. Human lung dendritic cells have an immature phenotype with efficient mannose receptors. Am. J. Respir. Cell Mol. Biol. 21:547-554 (1999).

    Google Scholar 

  33. J. M. Coco-Martin, J. W. Oberink, T. A. van der Velden-de Groot, and E. C. Beuvery. Viability measurements of hybridoma cells in suspension cultures. Cytotechnology 8:57-64 (1992).

    Google Scholar 

  34. M. J. Geisow. Fluorescein conjugates as indicators of subcellular pH. A critical evaluation. Exp. Cell Res. 150:29-35 (1984).

    Google Scholar 

  35. G. P. Downey, R. J. Botelho, J. R. Butler, Y. Moltyaner, P. Chien, A. D. Scheiber, and S. Grinstein. Phagosomal maturation, acidification, and inhibition of bacterial growth in nonphagocytic cells transfected with FcγRIIA receptors. J. Biol. Chem. 274:28436-28444 (1999).

    Google Scholar 

  36. R. H. Muller. Colloidal Carriers for Controlled Drug Delivery and Targeting. Wissenschaftliche Verlagsgesellschaft Stuttgart, 1990.

    Google Scholar 

  37. B. Poole and S. Ohkuma. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J. Cell Biol. 90:665-669 (1981).

    Google Scholar 

  38. S. Ohkuma, J. Chudzik, and B. Poole. The effects of basic substances and acidic ionophores on the digestion of exogenous and endogenous proteins in mouse peritoneal macrophages. J. Cell Biol. 102:959-966 (1986).

    Google Scholar 

  39. P. Erbacher, J. S. Remy, and J. P. Behr. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway. Gene Ther. 6:138-145 (1999).

    Google Scholar 

  40. S. E. Fong, P. Smanik, M. C. Smith, and S. R. Jaskunas. Cationic liposome-mediated uptake of human immunodeficiency virus type 1 Tat protein into cells. J. Virol. Methods 66:149-157 (1997).

    Google Scholar 

  41. Y. Tabata and Y. Ikada. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9:356-362 (1988).

    Google Scholar 

  42. F. M. Griffin, J. A. Griffin, J. E. Leider, and S. C. Silverstein. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med. 142:1263-1282 (1975).

    Google Scholar 

  43. F. M. Griffin, J. A. Griffin, and S. C. Silverstein. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med. 144:788-809 (1976).

    Google Scholar 

  44. A. M. Torche, P. Le Corre, E. Albina, A. Jestin, and R. Le Verge. PLGA microspheres phagocytosis by pig alveolar macrophages: influence of poly(vinyl alcohol) concentration, nature of loaded-protein and copolymer nature. J. Drug Target. 7:343-354 (2000).

    Google Scholar 

  45. D. R. Absolom. Opsonins and dysopsonins: an overview. Methods Enzymol. 132:281-318 (1986).

    Google Scholar 

  46. K. Inaba, M. Inaba, M. Naito, and R. M. Steinman. Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J. Exp. Med. 178:479-488 (1993).

    Google Scholar 

  47. K. Matsuno, T. Ezaki, S. Kudo, and Y. Uehara. A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J. Exp. Med. 183:1865-1878 (1996).

    Google Scholar 

  48. A. Regnault, D. Lankar, V. Lacabanne, A. Rodriguez, C. Thery, M. Rescigno, T. Saito, S. Verbeek, C. Bonnerot, P. Ricciardi-Castagnoli, and S. Amigorena. Fcg receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 189:371-380 (1999).

    Google Scholar 

  49. D. Maurer, E. Fiebiger, B. Reininger, C. Ebner, P. Petzelbauer, G. P. Shi, H. A. Chapman, and G. Stingl. Fc epsilon receptor I on dendritic cells delivers IgE-bound multivalent antigens into a cathepsin S-dependent pathway of MHC class II presentation. J. Immunol. 161:2731-2739 (1998).

    Google Scholar 

  50. N. A. Fanger, D. Voigtlaender, C. Liu, S. Swink, K. Wardwell, J. Fisher, R. F. Graziano, L. C. Pfefferkorn, and P. M. Guyre. Characterization of expression, cytokine regulation, and effector function of the high affinity IgG receptor Fc gamma RI (CD64) expressed on human blood dendritic cells. J. Immunol. 158:3090-3098 (1997).

    Google Scholar 

  51. L. Josephson, C. H. Tung, A. Moore, and R. Weissleder. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem. 10:186-191 (1999).

    Google Scholar 

  52. M. Desjardins. Biogenesis of phagolysosomes: the ‘kiss and run’ hypothesis. Trends Cell Biol. 5:183-187 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Walter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiele, L., Merkle, H.P. & Walter, E. Phagocytosis and Phagosomal Fate of Surface-Modified Microparticles in Dendritic Cells and Macrophages. Pharm Res 20, 221–228 (2003). https://doi.org/10.1023/A:1022271020390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022271020390

Navigation