Skip to main content
Log in

Acetyl-L-Carnitine Arginine Amide Prevents β 25–35-Induced Neurotoxicity in Cerebellar Granule Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebellar granule cells (CGC) at different stages of maturation in vitro (1 or 6 DIV), were treated with β 25–35 and acetyl-L-carnitine arginine amide (ST857) in presence of 25 mM KC1 in the culture medium, and neuronal viability was assessed. Three days of treatment slightly modified the survival of 1 DIV-treated cells, which degenerate and die five days later β-amyloid matching. Similarly, a significative neurotoxic effect was observed on 6 DIV treated-cells after 5 days of exposure to the peptide, while the death occurred within 8 days. ST857 coincubated with β 25–35 was able to rescue neurons from β 25–35-induced neurotoxicity. We also studied the changes in Ca2+ homeostasis following glutamate stimulation, in control and β-amyloid treated single cells, either in presence or in absence of ST857. β 25–35 did not affect basal [Ca2+]i, while modified glutamate-induced [Ca2+]i increase, causing a sustained plateau phase of [Ca2+]i, that persisted after the removal of the agonist. ST857 pretreatment completely reverted this effect suggesting that, in CGC chronically treated with β 25–35, ST857 could protect the cells by neurotoxic insults of the peptide likely interfering with the cellular mechanisms involved in the control of Ca2+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Selkoe, D. J. 1993. Physiological production of the β-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci. 16:403–409.

    PubMed  Google Scholar 

  2. Selkoe, D. J. 1991. The molecular pathology of Alzheimer's disease. Neuron 6:487–498.

    PubMed  Google Scholar 

  3. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. 1992. β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12:376–389.

    PubMed  Google Scholar 

  4. Pike, C. J., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W. 1991. In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563:311–314.

    PubMed  Google Scholar 

  5. Koh, J. Y., Yang, L. L., and Cotman, C. W. 1990. β-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 533:315–320.

    Article  PubMed  Google Scholar 

  6. Yankner, B. A., Duffy, L. K., and Kirshner, D. A. 1990. Neurotrophic and neurotoxic effects of amyloid β-protein: Reversal by tachykinin neuropeptides. Science 250:279–282.

    PubMed  Google Scholar 

  7. Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W. 1993. Neurodegeneration induced by β-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci. 13:1676–1687.

    PubMed  Google Scholar 

  8. Goodman, Y., and Mattson, M. P. 1994. Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide induced oxidative injury. Exp. Neurol. 128:1–12.

    PubMed  Google Scholar 

  9. Mattson, M. P., Tommaselli, K. J., and Rydel, R. E. 1993. Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF. Brain Res. 621:35–49.

    PubMed  Google Scholar 

  10. Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smit-Swintosky, V., and Rydel, R. E. 1993b. β-amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzeimer's disease. Trends Neurosci. 16:409–414.

    PubMed  Google Scholar 

  11. Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., and Butterfield, D. A. 1994. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91:3270–3274.

    PubMed  Google Scholar 

  12. Butterfield, D. A., Hensley, K., Harris, M., Mattson, M. P., and Carney, J. M. 1994. β-amyloid peptide free radical fragments initiates synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer disease. Biochem. Biophys. Res. Commun. 200:710–715.

    PubMed  Google Scholar 

  13. Fritz, I. B., and Arrigoni-Martelli, E. 1993. Site of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends Pharm. Sci. 14:355–360.

    PubMed  Google Scholar 

  14. Monti, D., Troiano, L., Tropea, F., Grassilli, E., Cossarizza, A., Barozzi, D., Pelloni, M. C., Tamassia, M. G., Bellomo, G., and Franceschi, C. 1992. Apoptosis-programmed cell death: a role in the aging process? Am. J. Clin. Nutr. 55:1208S-1214S.

    PubMed  Google Scholar 

  15. Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., McCord, J. M., and Hrman, D. 1987. Oxygen radicals and human disease. Ann. Intern. Med. 107:526–545.

    PubMed  Google Scholar 

  16. Byrne, E., Dennet, X., and Trounce, I. 1991. Oxidative energy failure in post-mitotic cells: a major factor in senescence. Rev. Neurol. 147:532–53.

    PubMed  Google Scholar 

  17. Benzi, G., and Moretti, A. 1995. Are reactive oxygen species involved in Alzheimer's disease? Neurobiol. Aging 16: 661–674.

    PubMed  Google Scholar 

  18. Ghirardi, O., Milano, S., Ramacci, M. T., and Angelucci, L. 1988. Effect of acetyl-L-carnitine chronic treatment on discrimination model in aged rats. Physiol. Behav. 44:769–773.

    PubMed  Google Scholar 

  19. Spagnoli, A., Lucca, U., and Menasce, G. 1991. Long-term L-acetyl-carnitine treatment in Alzheimer's disease. Neurology 41:1726–1732.

    PubMed  Google Scholar 

  20. Westlund, K. N., Lu, Y., Werrbach-Perez, K., Hulsebosch, C. E., Morgan, B., Pizzo, D. P., Eisenberg, H. M., and Perez-Polo, J. R. 1992. Effects of nerve growth factor and acetyl-L-carnitine arginyl amide on the human neuronal line HCN-1A. Int. J. Dev. Neurosci. 10(5):361–73.

    PubMed  Google Scholar 

  21. Taglialatela, G., Navarra, D., Olivi, A., Ramacci, M. T., Werrbach-Perez, K., Perez-Polo, J. R., and Angelucci, L. 1995. Neurite outgrowth in PC12 cells stimulated by acetyl-L-carnitine arginine amide. Neurochem. Res. 20:1–9.

    PubMed  Google Scholar 

  22. Levi, G., Aloisi, F., Ciotti, M. T., and Gallo, V. 1984. Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cells cultures. Brain Res. 290:77–86.

    PubMed  Google Scholar 

  23. Scorziello, A., Meucci, O., Florio, T., Fattore, M., Forloni, G. L., Salmona, M., and Schettini, G. 1996. β 25–35 alters calcium homeostasis and induces neurotoxicity in cerebellar granule cells. J. Neurochem. 66:1995–2003.

    PubMed  Google Scholar 

  24. Soto, A. M., and Sonnenschein, C. 1985. The role of estrogens on the proliferation of human breast tumor cells (MCF-7) Steroid. Biochem. 23:87–94.

    Google Scholar 

  25. Hansen, M. B., Nielsen, S. E., and Berg, K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell killing. J. Immunol Meth. 119:203–210.

    Google Scholar 

  26. Galli, C., Meucci, O., Scorziello, A., Werge, T. M., Calissano, P., Schettini, G. 1995. Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J. Neurosci. 15(2):1172–1179.

    PubMed  Google Scholar 

  27. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improve fluorescence properties. J. Biol. Chem. 260:3440–3450.

    PubMed  Google Scholar 

  28. Forloni, G., Angeretti, N., and Smiroldo, S. 1994. Neuroprotective activity of acety-L-carnitine: studies in vitro J. Neurosci. Res. 37:92–96.

    PubMed  Google Scholar 

  29. Arispe, N., Rojas, E., and Pollard, B. 1993. Alzheimer disease amyloid β protein forms calcium channels in bilayer membranes: blockade by tromthamine and aluminium. Proc. Natl. Acad. Sci. 90:567–571.

    PubMed  Google Scholar 

  30. Simmons, M. A., and Schnaider, C. R. 1993. Amyloid β peptides act directly on single neurons. Neurosci. Lett. 150:133–136.

    PubMed  Google Scholar 

  31. Coyle, J. T., and Puttfarcken, P. 1993. Oxidative stress, glutamate and neurodegenerative disorders. Science 262:689–695.

    PubMed  Google Scholar 

  32. Tritschler, H. J., Packer, L., and Medori, R. 1994. Oxidative stress and mitochondrial dysfunction in neurodegeneration. Biochem. Mol. Biol. Int. 34:169–181.

    PubMed  Google Scholar 

  33. Behl, C., Davis, J. B., Lesley, R., and Schubert, D. 1994. Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77:817–827.

    Article  PubMed  Google Scholar 

  34. Lockhart, B. P., Benicourt, C., Jiunien, J. L., and Privat, A. 1994. Inhibitors of free radicals formation fail to attenuate direct β-amyloid 25–35 peptide-mediated neurotoxicity in rat hippocampal cultures. J. Neurosc. Res. 39:494–505.

    Google Scholar 

  35. Weiss, J. H., Pike, C. J., and Cotman, C. W. 1994. Ca2+ channel blockers attenuate β-amyloid peptide toxicity to cortical neurons in culture. J. Neurochem. 62:372–375.

    PubMed  Google Scholar 

  36. Lindholm, D., Dechant, G., Heisenberg, C. P., and Thoenen, H. 1993. Brain-derived neurotrophic factor is a survival factor for cultured rat cerebellar granule neurons and protects them against glutamate-induced neurotoxicity. Eur. J. Neurosci. 5:1455–1464.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scorziello, A., Meucci, O., Calvani, M. et al. Acetyl-L-Carnitine Arginine Amide Prevents β 25–35-Induced Neurotoxicity in Cerebellar Granule Cells. Neurochem Res 22, 257–265 (1997). https://doi.org/10.1023/A:1022430503520

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022430503520

Navigation