Skip to main content
Log in

57Fe Mössbauer Spectroscopy Studies of Meteorites: Implications for Weathering Rates, Meteorite Flux, and Early Solar System Processes

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Ordinary chondrite finds, terrestrial age dated using 14C analyses, from different meteorite accumulation sites, have been examined by Mössbauer spectroscopy to quantitatively determine terrestrial oxidation. We observe differences in weathering rates between sites, and also between different chondrite groups. A comparison of weathering over time, and its effect in ‘eroding’ meteorites, together with the number and mass distribution of meteorites in each region, enables us to derive estimates of the number of meteorite falls over a given mass per year. Studies of how the oxygen isotopic composition of samples varies with weathering indicate that incipient alteration may occur without a pronounced isotopic effect, possibly due to weathering of silicates to topotactically oriented smectite confined spaces where the water volume is limited. This finding has profound implications for the use of oxygen isotopes as a tool in understanding water–rock interaction. It also may reconcile previously contradictory data regarding the nebular or asteroidal location of pre-terrestrial aqueous alteration. Finally, Mössbauer spectroscopy is also found to be a useful tool in determining mineral abundance in carbonaceous chondrites, where a fine-grained matrix makes traditional approaches inapplicable. Again, the results have implications for the modification of chondritic materials in the early solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bland, P. A. et al., Geochimica et Cosmochimica Acta 62 (1998), 3169.

    Google Scholar 

  2. Delisle, G., Die Geowissenschaften 11 (1993), 59.

    Google Scholar 

  3. Jarosewich, E., Meteoritics 25 (1990), 323.

    Google Scholar 

  4. Clayton, R. N. et al., Geochimica et Cosmochimica Acta 55 (1991), 2317.

    Google Scholar 

  5. McSween, H. Y. and Bennett, III, M. E., Icarus 90 (1991), 107.

    Google Scholar 

  6. Kallemeyn, G. W. et al., Geochimica et Cosmochimica Acta 53 (1989), 2747.

    Google Scholar 

  7. Bland, P. A. et al., American Mineralogist 82 (1997), 1187.

    Google Scholar 

  8. Benoit, P. H. et al., Meteoritics and Planetary Science 34 (1999), in press.

  9. Jull, A. J. T. et al., Geochimica et Cosmochimica Acta 54 (1990), 2895.

    Google Scholar 

  10. Jull, A. J. T., Wlotzka F. and Donahue, D. J., Lunar and Planetary Science Conference 24 (1991), 667.

    Google Scholar 

  11. Jull, A. J. T. et al., Meteoritics 28 (1993), 88.

    Google Scholar 

  12. Jull, A. J. T. et al., Lunar and Planetary Institute Technical Report 95-02, 1995.

  13. Wlotzka, F., Jull, A. J. T. and Donahue, D. J., Lunar and Planetary Institute Technical Report 95-02, 1995.

  14. Franchi, I. A. et al., Meteoritics 31 (1996), 46.

    Google Scholar 

  15. Nishiizumi, K., Lunar and Planetary Institute Technical Report 90-03, 1990.

  16. Bland, P. A. et al., Monthly Notices of the Royal Astronomical Society 283 (1996), 551.

    Google Scholar 

  17. Bland, P. A. et al., In: M. M. Grady, R. Hutchison, G. J. H. McCall and D. A. Rothery (eds), Meteorites: Flux with Time and Impact Effects, Vol. 140, Geological Society of London, Special Publication, 1998, p. 43.

  18. Krot, A. N. et al., Meteoritics 30 (1995), 748.

    Google Scholar 

  19. Krot, A. N. et al., Meteoritics 33 (1998), 1065.

    Google Scholar 

  20. Kojima, T. and Tomeoka K., Geochimica et Cosmochimica Acta 60 (1996), 2651.

    Google Scholar 

  21. Brearley, A. J., Science 278 (1997), 76.

    Google Scholar 

  22. Palme, H. and Fegley, B., Earth and Planetary Science Letters 101 (1990), 180.

    Google Scholar 

  23. Clayton, R. N., Lunar and Planetary Institute Technical Report 97-02, 1997.

  24. Bland, P. A. et al., Science (1999), submitted.

  25. Eggleton, R. A., Clays Clay Mineral. 32 (1984), 1.

    Google Scholar 

  26. Banfield, J. F. et al., Contrib. Mineral. and Petrology 106 (1990), 110.

    Google Scholar 

  27. Hochella, M. F., Jr. and Banfield, J. F., In: A. F. White and S. L. Brantley (eds), Chemical Weathering Rates of Silicate Minerals, Min. Soc. Am., Washington, DC, 1995, p. 353.

    Google Scholar 

  28. Champness, P. E., Mineralogical Magazine 37 (1970), 790.

    Google Scholar 

  29. Bland, P. A. et al., Lunar and Planetary Institute Technical Report 97-02, 1997.

  30. Bland, P. A. et al., Meteoritics and Planetary Science 34 (1999), A12.

    Google Scholar 

  31. McSween, H. Y., Jr., Geochimica et Cosmochimica Acta 41 (1977), 1777.

    Google Scholar 

  32. Roy-Poulson, H. et al., Physica Scripta 23 (1981), 1113.

    Google Scholar 

  33. Oliver F. W. et al., Meteoritics 19 (1983), 25.

    Google Scholar 

  34. Fisher, D. S. and Burns, R. G., Lunar and Planetary Science Conference 22 (1991), 389.

    Google Scholar 

  35. Bland, P. A. et al., Lunar and Planetary Science Conference 26 (1995), 133.

    Google Scholar 

  36. Hoffman, E. et al., Lunar and Planetary Science Conference 30 (1999), 1950.

    Google Scholar 

  37. Clarke, R. S. et al., Smithsonian Contrib. Earth Sci. 5 (1970), 53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bland, P.A., Berry, F.J., Jull, A.J.T. et al. 57Fe Mössbauer Spectroscopy Studies of Meteorites: Implications for Weathering Rates, Meteorite Flux, and Early Solar System Processes. Hyperfine Interactions 141, 481–494 (2002). https://doi.org/10.1023/A:1022440217371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022440217371

Navigation