Skip to main content
Log in

Quantitative Genetic Analysis of Larval Life History Traits in Two Alpine Populations of Rana temporaria

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We estimated genetic and maternal variance components of larval life history characters in alpine populations of Rana temporaria (the common frog) using a full-sib/half-sib breeding design. We studied trait plasticity by raising tadpoles at 14 or 20°C in the laboratory. Larval period and metamorphic mass were greater at 14°C. Larval period did not differ between populations, but high elevation metamorphs were larger than low elevation metamorphs. Significant additive variation for larval period was detected in the low altitude population. No significant additive variation was detected for mass at metamorphosis (MM), which instead displayed significant maternal effects. Plasticity in metamorphic mass of froglets was greater in the high altitude population. The plastic response of larval period to temperature did not differ between the populations. Evolution of metamorphic mass is likely constrained by lack of additive genetic variation. In contrast, significant heritability for larval period suggests this trait may evolve in response to environmental change. These results differ from other studies on R. temporaria, suggesting that populations of this broadly distributed species present substantial geographic variation in the genetic architecture and plasticity of tadpole life history traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebli, H., 1966. Rassenunterschiede in Bezug auf Entwicklungsgeschwindigkeit und Geschlechtsdifferenzierung bei Rana temporaria in den Tälern des Kantons Glarus (Schweiz). Rev. Suisse Zool. 73: 1–35.

    Google Scholar 

  • Alemayehu, F. & J.E. Parlevliet, 1997. Variation between and within Ethiopian barley landraces. Euphytica 94: 183–189.

    Google Scholar 

  • Atkinson, D.& R.M. Sibly, 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12: 235–239.

    Google Scholar 

  • Berger, L., M. Rybacki & H. Hotz, 1994. Artificial fertilization of water frogs. Amphibia-Reptilia 18: 408–413.

    Google Scholar 

  • Bernardo, J., 1996. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Am. Zool. 36: 216–236.

    Google Scholar 

  • Berven, K.A., 1982. The genetic basis of altitudinal variation in the wood frog Rana sylvatica. II. An experimental analysis of larval development. Oecologia 52: 360–369.

    Google Scholar 

  • Berven, K.A., 1987. The heritable basis of variation in larval developmental patterns within populations of the wood frog (Rana sylvatica). Evolution 41: 1088–1097.

    Google Scholar 

  • Berven, K.A. & D.E. Gill, 1983. Interpreting geographic variation in life-history traits. Am. Zool. 23: 85–97.

    Google Scholar 

  • Berven, K.A., D.E. Gill & S.J. Smith-Gill, 1979. Countergradient selection in the green frog, Rana clamitans. Evolution 33: 609–623.

    Google Scholar 

  • Blouin, M.S., 1992. Genetic correlations among morphometric traits and rates of growth and differentiation in the green tree frog, Hyla cinerea. Evolution 46: 735–744.

    Google Scholar 

  • Brand, M. & K. Grossenbacher, 1979. Untersuchungen zur Entwicklungsgeschwindigkeit der Larven von Triturus a. alpestris, Bufo b. bufo und Rana t. temporaria aus Populationen verschiedener Höhenstufen in den Schweizer Alpen. PhD Thesis, University of Berne.

  • BUWAL, 1994. Inventar der Amphibienlaichgebiete von nationaler Bedeutung, ZH. Bundesamt für Umwelt, Wald und Landschaft, Berne.

    Google Scholar 

  • Conover, D.O. & E.T. Schultz, 1995. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 10: 248–252.

    Google Scholar 

  • Dingle, H., T.A.Mousseau & S.M. Scott, 1990. Altitudinal variation in life cycle syndromes of California USA populations of the grasshopper Melanoplus sanguinipes F. Oecologia 84: 199–206.

    Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics. Longman, Harlow, Essex, 4th edn.

    Google Scholar 

  • Fox, C.W., M.E. Czesak, T.A. Mousseau & D.A. Roff, 1999. The evolutionary genetics of an adaptive maternal effect: Egg size plasticity in a seed beetle. Evolution 53: 552–560.

    Google Scholar 

  • Gosner, K.L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.

    Google Scholar 

  • Grossenbacher, K., 1988. Verbreitungsatlas der Amphibien der Schweiz. Doc. Faun. Helv. 7, Neuchâtel.

  • Harkey, G.A. & R.D. Semlitsch, 1988. Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia 1988: 1001–1007.

    Google Scholar 

  • Hoffmann, A.A. & J. Merilä, 1999. Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol. Evol. 14: 96–101.

    Google Scholar 

  • Holms, P., 1982. Altitudinal comparisons in the ecology and reproduction of the common frog (Rana temporaria L.). Trans. Nat. Hist. Soc. Northumberland 49: 14–23.

    Google Scholar 

  • Houle, D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204.

    Google Scholar 

  • Jørgensen, C.B., 1981. Ovarian cycle in a temperate zone frog, Rana temporaria, with special reference to factors determining number and size of eggs. J. Zool. 195: 449–458.

    Google Scholar 

  • Kaplan, R.H., 1998. Maternal effects, developmental plasticity, and life history evolution: an amphibian model, pp. 244–260 in Maternal Effects as Adaptations, edited by T.A. Mousseau & C.W. Fox. Oxford University Press, New York.

    Google Scholar 

  • Kempthorne, O. & R.N. Curnow, 1961. The partial diallel cross. Biometrics 17: 229–250.

    Google Scholar 

  • Kirchhofer, W., 1982. DeKlimmaatlas der Schweiz. Bundesamt für Landestopographie, Bern, Switzerland.

    Google Scholar 

  • Lacey, E.P., 1998. What is an adaptive environmentally induced parental effect? pp. 54–66 in Maternal Effects as Adaptations, edited by T.A. Mousseau & C.W. Fox. Oxford University Press, New York.

    Google Scholar 

  • Lande, R., 1982. A quantitative genetic theory of life history evolution. Ecology 63: 607–615.

    Google Scholar 

  • Lande, R. & S.J. Arnold, 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.

    Google Scholar 

  • Laurila, A., S. Karttunin & J. Merilä, 2002. Adaptive phenotypic plasticity and genetics of larval life histories in two Rana temporaria populations. Evolution 56: 617–627.

    Google Scholar 

  • Levins, R., 1968. Evolution in Changing Environments. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Merilä, J., A. Laurila, A.T. Laugen, K. Räsänen & M. Pahkala, 2000a. Plasticity in age and size at metamorphosis in Rana temporaria - comparison of high and low latitude populations. Ecography 23: 457–465.

    Google Scholar 

  • Merilä, J., A. Laurila, M. Pahkala, K. Räsänen & A.T. Laugen, 2000b. Adaptive phenotypic plasticity in timing of metamorphosis in the common frog Rana temporaria. Ecoscience 7: 18–24.

    Google Scholar 

  • Merilä, J. & B.C. Sheldon, 1999. Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity 83: 103–109.

    Google Scholar 

  • Miaud, C., R. Guyetant & J. Elmberg, 1999. Variation in life-history traits in the common frog Rana temporaria (Amphibia: Anura): a literature review and new data from the French Alps. J. Zool. 249: 61–73.

    Google Scholar 

  • Monge, C. & F. Leon-Velarde, 1991. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol. Rev. 71: 1135–1172.

    Google Scholar 

  • Mousseau, T.A. & D.A. Roff, 1995. Genetic and environmental contributions to geographic variation in the ovipositor length of a cricket. Ecology 76: 1473–1482.

    Google Scholar 

  • Newman, R.A., 1988. Genetic variation for larval anuran (Scaphiopus couchii) development time in an uncertain environment. Evolution 42: 763–773.

    Google Scholar 

  • Newman, R.A., 1998. Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level. Oecologia 115: 9–16.

    Google Scholar 

  • Oyama, K., 1993. Geographic differentiation among populations of Arabis serrata Fr. and Sav. (Brassicaceae). J. Plant Res. (106): 15–24.

    Google Scholar 

  • Plytycz, B., J. Dulak & A. Pecio, 1984. Genetic control of length of the larval period in Rana temporaria. Folia Biol. (Cracow) 32: 155–166.

    Google Scholar 

  • Price, T. & D. Schluter, 1991. On the low heritability of life-history traits. Evolution 45: 853–861.

    Google Scholar 

  • Roff, D.A., 1992. The Evolution of Life Histories: Theory and Analysis. Chapman & Hall, New York.

    Google Scholar 

  • Roff, D.A., 1997. Evolutionary Quantitative Genetics. Chapman & Hall, New York.

    Google Scholar 

  • Ryser, J., 1996. Comparative life histories of a low-and a highelevation population of the common frog Rana temporaria. Amphibia-Reptilia 17: 183–195.

    Google Scholar 

  • SAS Institute Inc., 1999. SAS/STAT®User's Guide, Version 8. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Scheiner, S.M. & C.J. Goodnight, 1984. The comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata. Evolution 38: 845–855.

    Google Scholar 

  • Shaw, R.G. & D.L. Byers, 1998. Genetics of maternal effects, pp. 97–111 in Maternal Effects as Adaptations, edited by T.A. Mousseau & C.W. Fox. Oxford University Press, New York.

    Google Scholar 

  • Sokal, R.R. & F.J. Rohlf, 1995. Biometry. Freeman, New York, 3rd edn.

    Google Scholar 

  • Sorci, G., J. Clobert & S. Belichon, 1996. Phenotypic plasticity of growth and survival in the common lizard Lacerta vivipara. J. Anim. Ecol. 65: 781–790.

    Google Scholar 

  • Ståhlberg, F., M. Olsson & T. Uller, 2001. Population divergence of developmental thermal optima in Swedish common frogs, Rana temporaria. J. Evol. Biol. 14: 755–762.

    Google Scholar 

  • Stearns, S.C., 1976. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51: 3–47.

    Google Scholar 

  • Stearns, S.C., 1992. The Evolution of Life Histories. Oxford University Press, New York.

    Google Scholar 

  • Travis, J., S.B. Emerson & M. Blouin, 1987. A quantitative genetic analysis of larval life-history traits in Hyla crucifer. Evolution 41: 145–156.

    Google Scholar 

  • Via, S., 1993. Adaptive phenotypic plasticity: target or by-product of selection in a variable environment? Am. Nat. 142: 352–365.

    Google Scholar 

  • Via, S. & R. Lande, 1985. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39: 505–522.

    Google Scholar 

  • Willham, R.L., 1963. The covariance between relatives for characters composed of components contributed by related individuals. Biometrics 19: 18–27.

    Google Scholar 

  • Windig, J.J., 1997. The calculation and significance testing of genetic correlations across environments. J. Evol. Biol. 10: 853–874.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, S., Pearman, P.B. Quantitative Genetic Analysis of Larval Life History Traits in Two Alpine Populations of Rana temporaria . Genetica 118, 1–10 (2003). https://doi.org/10.1023/A:1022965424352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022965424352

Navigation