Skip to main content
Log in

Energy Conservation and Dissipation in Mitochondria Isolated from Developing Tomato Fruit of Ethylene-Defective Mutants Failing Normal Ripening: The Effect of Ethephon, A Chemical Precursor of Ethylene

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Alternative oxidase (AOX) and uncoupling protein (UCP) are present simultaneously in tomato fruit mitochondria. In a previous work, it has been shown that protein expression and activity of these two energy-dissipating systems exhibit large variations during tomato fruit development and ripening on the vine. It has been suggested that AOX and UCP could be responsible for the respiration increase at the end of ripening and that the cytochrome pathway could be implicated in the climacteric respiratory burst before the onset of ripening. In this study, the use of tomato mutants that fail normal ripening because of deficiencies in ethylene perception or production as well as the treatment of one selected mutant with a chemical precursor of ethylene have revealed that the bioenergetics of tomato fruit development and ripening is under the control of this plant hormone. Indeed, the evolution pattern of bioenergetic features changes with the type of mutation and with the introduction of ethylene into an ethylene-synthesis-deficient tomato fruit mutant during its induced ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Affourtit, C., Albury, M., Crichton, P. G., and Moore, A. L. (2002). FEBS Lett. 510, 121-126.

    Google Scholar 

  • Almeida, A. M., Jarmuszkiewicz, W., Khomsi, H., Arruda, P., Vercesi, A. E., and Sluse, F. E. (1999). Plant Physiol. 119, 1323-1329.

    Google Scholar 

  • Almeida, A. M., Navet, R., Jarmuszkiewicz, W., Vercesi, A. E., Sluse-Goffart, C. M., and Sluse F. E. (2002) J. Bioenerg. Biomembr., 34, 487-498.

    Google Scholar 

  • Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P. Tsofina, L. M., Volkov, N. L., and Vygodina, T. V. (1989). Eur. J. Biochem. 182, 585-592.

    Google Scholar 

  • Beadle, N. C. W. (1937). Aust. J. Exp. Biol. Med. Sci. 15, 173-189.

    Google Scholar 

  • Bergevin, M., L'Heureux, G. P., Thompson, J. E., and Willemot, C. (1993). Physiol. Plant. 87, 522-527.

    Google Scholar 

  • Biale, J. B., and Young, R. E. (1981). Annu. Proceed. Phytochem. Soc. Eur. 19, 1-37.

    Google Scholar 

  • Bleecker, A. B., and Schaller, G. E. (1996). Plant Physiol. 111, 653-659.

    Google Scholar 

  • Borecky, J., Maia, I. G., Costa, A. D. T., Jezek, P., Chaimovich, H., de Andrade P. B. M., Vercesi, A. E., and Arruda, P. (2001). FEBS Lett. 505, 240-244.

    Google Scholar 

  • Brady, C. J. (1987). Annu. Rev. Plant Physiol. 38, 155-178.

    Google Scholar 

  • Buescher, R. W. (1977). Hort Sci. 12, 315-316.

    Google Scholar 

  • Considine, M. J., Daley, D. O., and Whelan, J. (2001). Plant Physiol. 126, 1619-1629.

    Google Scholar 

  • Folch, J., Lees, M., and Sloane-Stanley, G. H. (1957). J. Biol. Chem. 226, 497-509.

    Google Scholar 

  • Giovannoni, J. J. (2001). Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 52, 725-749.

    Google Scholar 

  • Gornall, A. G., Bardawill, C. J., and Dawid, M. M. (1949). J. Biol. Chem. 177, 751-757.

    Google Scholar 

  • Gray, J. E., Picton, S., Giovannoi, J. J., and Grierson, D. (1994). Plant Cell Environ. 17, 557-571.

    Google Scholar 

  • Herner, R. C., and Sink, K. C., Jr (1973). Plant Physiol. 52, 38-42.

    Google Scholar 

  • Holtzapffel, R., Finnegan, P. M., Millar, A. H., Badger, M. R., and Day, D. A. (2002). Funct. Plant Biol. 29, 827-834.

    Google Scholar 

  • Hua, J., and Meyerowitz, E. M. (1998). Cell 94, 261-271.

    Google Scholar 

  • Jarmuszkiewicz, W., Almeida, A. M., Sluse-Goffart, C. M., Sluse, F. E., and Vercesi, A. E. (2000). J. Biol. Chem. 275, 13315-13320.

    Google Scholar 

  • Jezek, P., Costa, A. D. T., and Vercesi, A. E. (1997). J. Biol. Chem. 272, 24272-24278.

    Google Scholar 

  • Jezek, P., Engostová, H., žáckova, M., Vercesi, A. E., Costa, A. D. T., Arruda, P., and Garlid, K. D. (1998). Biochem. Biophys. Acta 1365, 319-327.

    Google Scholar 

  • Kowaltowski, A. J., Costa, A. D. T., and Vercesi, A. E. (1998). FEBS Lett. 425, 213-216.

    Google Scholar 

  • Lanahan, M. B., Yen, H.-C., Giovannoni, J. J., and Klee, H. J. (1994). Plant Cell 6, 521-530.

    Google Scholar 

  • Lashbrook, C. C., Tieman, D. M., and Klee, H. J. (1998). Plant J. 15, 243-252.

    Google Scholar 

  • Leliévre, J.-M., Latche, A., Jones, B., Bouzayen, M., and Pech, J.-C. (1997). Physiol. Plant. 101, 727-739.

    Google Scholar 

  • Lincoln, J. E., and Fischer, R. L. (1988). Mol. Gen. Genet. 212, 71-75.

    Google Scholar 

  • Lyons, J. M., Pratt, H. K. (1963). Am. Soc. Hort. Sci. 84, 491-500.

    Google Scholar 

  • Maxwell, D. P., Wang, Y., and McIntosh, L. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 8271-8276.

    Google Scholar 

  • Meeuse, B. J. D. (1975). Annu. Rev. Plant Physiol. 26, 117-126.

    Google Scholar 

  • Mizrahi, Y., Dostal, H. C., and Cherry, J. H. (1975). HortSci. 10, 414-415.

    Google Scholar 

  • Piechulla, B., Glick, R. E., Bahl, H., Melis, A., and Gruissem, W. (1987). Plant Physiol. 84, 911-917.

    Google Scholar 

  • Popov, V. N., Simonian, R. A., Skulachev, V. P., and Starcov, A. A. (1997). FEBS Lett. 415, 87-90.

    Google Scholar 

  • Ricquier, D., and Bouillaud, F. (2000). Biochem. J. 345, 161-179.

    Google Scholar 

  • Sluse, F. E., Almeida, A. M., Jarmuszkiewicz, W., and Vercesi, A. E. (1998). FEBS Lett 433, 237-240.

    Google Scholar 

  • Sluse, F. E., and Jarmuszkiewicz, W. (1998). Braz. J. Med. Biol. Res. 31, 733-747.

    Google Scholar 

  • Sluse F. E., and Jarmuszkiewicz, W. (2000). Braz. J. Med. Biol. Res 33, 259-268.

    Google Scholar 

  • Sluse F. E., and Jarmuszkiewicz, W. (2002). FEBS Lett. 510, 117-120.

    Google Scholar 

  • Streptanova, A. N., and Ecker, J. R. (2000). Curr. Opin. Plant Biol. 3, 353-360.

    Google Scholar 

  • Tieman, D. M., and Klee, H. J. (1999). Plant Physiol. 120, 165-172.

    Google Scholar 

  • Tieman, D. M., Taylor, M. G., Ciardi, J. A., and Klee, H. (2000). Proc. Natl. Acad. Sci. 97, 5663-5668.

    Google Scholar 

  • Tigchelaar, E. C., McGlasson, W. B., and Buescher, R. W. (1978). HortSci. 13, 508-513.

    Google Scholar 

  • Vanlerberghe, G. C., and McIntosh, L. (1997). Annu. Rev. Plant Physiol. Mol. Biol. 48, 703-734.

    Google Scholar 

  • Vercesi, A. E., Martins, I. S., Silva, M. A. P., Leite, H. M. F., Cuccovia, I. M., and Chaimovich, H. (1995). Nature, 375, 24

    Google Scholar 

  • Wieckowski, M., and Wojtczak, L. (1997). Biochem. Biophys. Res. Commun. 232, 414-417.

    Google Scholar 

  • Yang, S. F., and Hoffman, N. E. (1984). Annu. Rev. Plant Physiol. 35, 155-189.

    Google Scholar 

  • Zackova, M., Kramer, R., and Jezek, P. (2000). Int. J. Biochem. Cell Biol. 32, 499-508.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis E. Sluse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navet, R., Jarmuszkiewicz, W., Almeida, A.M. et al. Energy Conservation and Dissipation in Mitochondria Isolated from Developing Tomato Fruit of Ethylene-Defective Mutants Failing Normal Ripening: The Effect of Ethephon, A Chemical Precursor of Ethylene. J Bioenerg Biomembr 35, 157–168 (2003). https://doi.org/10.1023/A:1023750204310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023750204310

Navigation