Skip to main content
Log in

Comparison of microstructures for plane shock-loaded and impact crater-related nickel: the microtwin-microband transition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Plane-wave shock-loaded Ni exhibits {111} microtwins which increase in frequency with increasing peak shock pressure above a critical twinning pressure of ∼30 GPa. In contrast, microbands coincident with traces of {111} are produced below impact craters in Ni targets by stainless steel projectiles at velocities up to 3.5 km/s. The microband widths are ten times the 0.02 μm twin widths and are characterized by misorientations of roughly 2°. Both shock-loaded and impacted Ni have similar dislocation cell structures which decrease in cell size with increasing pressure or equivalent stress. The exclusive formation of microbands in connection with impact craters in Ni is expected on the basis of its high SFE (∼130 mJ/m2), and a simple dislocation model is developed for the microtwin-microband transition based on graphical summaries which include shock (stress) geometry and SFE effects in FCC metals and alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Quinones, J. M. Rivas and L. E. Murr, J. Mater. Sci. Lett. 14 (1995) 685.

    Google Scholar 

  2. S. A. Quinones and L. E. Murr, Phys. Stat. Sol. (a) 166 (1998) 763.

    Google Scholar 

  3. M. Hatherly and A. S. Malin, Metal Tech. 6 (1979) 308.

    Google Scholar 

  4. A. S. Maline and M. Hatherly, ibid. 13 (1979) 463.

    Google Scholar 

  5. P. J. Jackson, Scripta Metall. 17 (1983) 199.

    Google Scholar 

  6. J. C. Huang and G. T. Gray III, Acta Metall. 37(2) (1989) 3335.

    Google Scholar 

  7. R. J. Deangelis and J. B. Cohen, J. Metals 15 (1963) 681.

    Google Scholar 

  8. F. I. Grace, J. Appl. Phys. 40 (1969) 2649.

    Google Scholar 

  9. L. E. Murr, in “Shock Wave and High-Strain-Rate Phenomena in Metals,” edited by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981) Chap. 37, p. 607.

    Google Scholar 

  10. J. C. Sanchez, L. E. Murr and K. P. Staudhammer, Acta Mater. 45(8) (1997) 3223.

    Google Scholar 

  11. L. E. Murr, E. A. Trillo, A. A. Bujanda and N. E. Martinez, ibid. 50 (2002) 121.

    Google Scholar 

  12. B. Gonzales, L. E. Murr, O. L. Valerio, E. V. Esquivel and H. Lopez, Mater. Characterization, in press.

  13. L. E. Murr, “Interfacial Phenomena in Metals and Alloys” (Addison-Wesley, Reading, MA, 1975); reprinted by Tech Books, Herndon, VA, 1991 and available from CBLS, 119 Brentwood St., Marietta, OH 45750; FAX: 740-374-8029.

    Google Scholar 

  14. F. Greulich and L. E. Murr, Mater. Sci. Engng. 37 (1979) 81.

    Google Scholar 

  15. M. A. Meyers, “Dynamic Behavior of Materials” (Wiley, New York, 1994).

    Google Scholar 

  16. L. E. Murr, in “Shock Waves in Condensed Matter” edited by S. C. Schmidt and N. C. Holmes (Elsevier Science, B.V., Amsterdam, 1998) p. 315.

    Google Scholar 

  17. L. E. Murr and D. Kuhlmann-Wilsdorf, Acta Metll. 26 (1978) 847.

    Google Scholar 

  18. L. E. Murr, in “Materials at High Strain Rates,” edited by T. Z. Blazynski (Elsevier Science, New York/London, 1987) Chap. 1, p. 1.

    Google Scholar 

  19. L. E. Murr and S.-H. Wang, Res. Mechanica 4 (1982) 237.

    Google Scholar 

  20. Z. S. Basinski and T. E. Mitchell, Phil. Mag. 13 (1966) 103.

    Google Scholar 

  21. C.-C. Li, J. D. Flasck, J. A. Yaker and W. C. Leslie, Met. Trans. A 9A (1978) 85.

    Google Scholar 

  22. B. Scholtes, O. VÖhringer and E. Macherasch, in Proc. ICMA6 (Pergamon, New York, 1982) Vol. 1, p. 255.

    Google Scholar 

  23. S. Thuillier and E. F. Rauch, Acta Metall, et Mater. 42(6) (1994) 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esquivel, E.V., Murr, L.E., Trillo, E.A. et al. Comparison of microstructures for plane shock-loaded and impact crater-related nickel: the microtwin-microband transition. Journal of Materials Science 38, 2223–2231 (2003). https://doi.org/10.1023/A:1023796619086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023796619086

Keywords

Navigation