Skip to main content
Log in

Wind Drift Compensation in Migrating Dragonflies Pantala (Odonata: Libellulidae)

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Tailwind drift compensation serves to maximize a migrant's flight distance on a given amount of energy, and crosswind drift compensation serves to hold a course true and minimize the distance flown. With full or part compensation, airspeeds are predicted to increase with greater crosswind drift. To test whether migrating dragonflies compensated for wind drift, I measured the velocity and heading of Pantala hymenaea and P. flavescens in natural flight over a lake and the ambient wind speed and direction. P. hymenaea flew north-easterly (58°), whereas P. flavescens flew significantly more east–north easterly (74°) throughout the day. Pantala spp. demonstrated part compensation for changes in crosswind drift within individuals (mean compensation = 54%, P = 0.0000), evidence for use of a ground reference to correct for drift when flying over water. Among individuals, P. flavescens compensated for crosswind drift. P. hymenaea overcompensated and then drifted downwind on one morning and compensated for crosswind drift on the next. As predicted from optimal migration theory, airspeed (5.0 m/s for both species with no tailwind) decreased with tailwind velocity both among individuals (data for both species pooled [n = 19], P < 0.0001) and within each individual as it crossed the lake (P = 0.0016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alerstam, T. (1979). Wind as a selective agent in bird migration. Ornis Scand. 10: 76–93.

    Google Scholar 

  • Alerstam, T., and Hedenström, A. (1998). The development of bird migration theory. J. Avian Biol. 29: 343–369.

    Google Scholar 

  • Alerstam, T., and Pettersson, S.-E. (1976). Do birds use waves for orientation when migrating across the sea? Nature 259: 205–207.

    Google Scholar 

  • Bildstein, K. L. (1999). Racing with the sun: The forced migration of the broad-winged hawk. In Able, K. P. (ed.), Gatherings of Angels: Migrating Birds and Their Ecology, Cornell University Press, Ithaca, NY, pp. 79–102.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J. (1971). The Wangara experiment: Boundary layer data. Division of meteorological physics technical paper 19, Commonwealth Scientific and Industrial Research Organization, Australia.

    Google Scholar 

  • Dudley, R., and DeVries, P. J. (1990). Flight physiology of migrating Urania fulgens (Uraniidae) moths: Kinematics and aerodynamics of natural free flight. J. Comp. Physiol. A 167: 145–154.

    Google Scholar 

  • Dudley, R., and Srygley, R. B. (1994). Flight physiology of Neotropical butterflies: Allometry of airspeeds during natural free flight. J. Exp. Biol. 191: 125–139.

    Google Scholar 

  • Dumont, H. J., and Verschuren, D. (1991). Atypical ecology of Pantala flavescens (Fabr.) on Easter Island (Anisoptera: Libellulidae). Odonatologica 20: 45–51.

    Google Scholar 

  • Ellington, C. P. (1991). Limitations on animal flight performance. J. Exp. Biol. 160: 71–91.

    Google Scholar 

  • Esch, H. E., and Burns, J. E. (1996). Distance estimation by foraging honeybees. J. Exp. Biol. 199: 155–162.

    Google Scholar 

  • Gill, A. E. (1982). Atmosphere-Ocean Dynamics, Academic Press, London.

    Google Scholar 

  • Heran, H. (1956). Ein Beitrag zur Frage nach der Wahrnehmungsgrundlage der Entfernungsweisung der Bienen. Z. Physiol. 38: 168–218.

    Google Scholar 

  • Pennycuick, C. J. (1978). Fifteen testable predictions about bird flight. Oikos 30: 165–176.

    Google Scholar 

  • Richardson, W. J. (1991). Wind and orientation of migrating birds: A review. In Berthold, P. (ed.), Orientation in Birds. Birkhäuser Verlag, Basel, pp. 226–249.

    Google Scholar 

  • Rudolph, D. C., and Fisher, C. D. (1993). Swainson's hawk predation on dragonflies in Argentina. Wilson Bull. 105: 365–366.

    Google Scholar 

  • Russell, R. W., May, M. L., Soltesz, K. L., and Fitzpatrick, J. W. (1998). Massive swarm migrations of dragonflies (Odonata) in eastern North America. Am. Midl. Nat. 140: 325–342.

    Google Scholar 

  • Srygley, R. B. (2001a). Sexual differences in tailwind drift compensation in Phoebis sennae butterflies (Lepidoptera: Pieridae) migrating over seas. Behav. Ecol. 12: 607–611.

    Google Scholar 

  • Srygley, R. B. (2001b). Compensation for fluctuations in crosswind drift without stationary landmarks in butterflies migrating over seas. Anim. Behav. 61: 191–203.

    Google Scholar 

  • Srygley, R. B., and Dudley, R. (1993). Correlations of the position of center of body mass with butterfly escape tactics. J. Exp. Biol. 174: 155–166.

    Google Scholar 

  • Srygley, R. B., and Oliveira, E. G. (2001). Migration patterns and orientation mechanisms within the flight boundary layer. In Woiwod, I., Reynolds, D., and Thomas, C. D. (Eds.), Insect Movement: Mechanisms and Consequences, CAB International, Oxford, pp. 183–206.

    Google Scholar 

  • Srygley, R. B., Oliveira, E. G., and Dudley, R. (1996). Wind drift compensation, flyways, and conservation of diurnal, migrant Neotropical Lepidoptera. Proc. Roy. Soc. Lond. B 263: 1351–1357.

    Google Scholar 

  • Wakeling, J. M., and Ellington, C. P. (1997). Dragonfly flight. III. Lift and power requirements. J. Exp. Biol. 200: 583–600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Srygley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srygley, R.B. Wind Drift Compensation in Migrating Dragonflies Pantala (Odonata: Libellulidae). Journal of Insect Behavior 16, 217–232 (2003). https://doi.org/10.1023/A:1023915802067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023915802067

Navigation