Skip to main content
Log in

Flow cytometric techniques for the detection of microorganisms

  • Published:
Methods in Cell Science

Abstract

Flow cytometry (FCM) is a technique, which allows one to analyse cells rapidly and individually, and permits the quantitative analysis of distributions of a property or properties in a population. It therefore offers many advantages over conventional measurements for the analysis of biological cells. Historically the technique has been widely applied for the study of mammalian cells, but its use in microbiology has been more limited; this is mainly a consequence of the smaller size of microbes, which results in the smaller optical signals that can be obtained from them. Developments in light sources and optics, together with brighter, spectrally-diverse dyes have reduced this barrier over recent years and the flow cytometer is now an essential tool in many microbiological research establishments. FCM has an increasing role to play in the detection of microbes in both industrial and clinical settings. Environmental monitoring to prevent outbreaks of human diseases such as cryptosporidiosis and Legionnaires' disease and to detect acts of biowarfare or bioterrorism are all amenable to flow cytometric study. This review seeks to highlight the role of the flow cytometer in the detection of microbial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Howlett NG, Avery SV (1999). Flow cytometric investigation of heterogeneous copper-sensitivity in asynchronously grown Saccharomyces cerevisiae. FEMS Microbiol Lett 176(2): 379-386.

    Google Scholar 

  2. Campbell A, Robertson L, Smith H (1993). Novel methodology for the detection of Cryptosporidium parvum- a comparison of cooled charge coupled

  3. Nebe-von-Caron G, Stephens P, Badley RA (1998). Assessment of bacterial viability status by flow cytometry and single cell sorting. J Appl Microbiol 84(6): 988-998.

    Google Scholar 

  4. Davey HM, Kaprelyants AS, Weichart DH, Kell DB (1999). Approaches to the estimation of microbial viability using flow cytometry. In: Current Protocols in Cytometry. New York: Wiley, pp 11.3.1-11.3.20.

    Google Scholar 

  5. Valdivia RH, Falkow S (1996). Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimuriumacid-inducible promoters by differential fluorescence induction. Mol Microbiol 22(2): 367-378.

    Google Scholar 

  6. Betz JW, Aretz W, Hartel W (1984). Use of flow cytometry in industrial microbiology for strain improvement programs. Cytometry 5: 145-150.

    Google Scholar 

  7. Bell PJL, Deere D, Shen J, Chapman B, Bissinger PH, Attfield PV, Veal DA (1998). A flow cytometric method for rapid selection of novel industrial yeast hybrids. Appl Environ Microbiol 64(5): 1669-1672.

    Google Scholar 

  8. Davey HM, Kell DB (1996). Flow cytometry and cell sorting of heterogeneous microbial populations - the importance of single-cell analyses. Microbiol Rev 60(4): 641-696.

    Google Scholar 

  9. Alvarez-Barrientos A, Arroyo J, Canton R, Nombela C, Sanchez-Perez M (2000). Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev 13(2): 167-195.

    Google Scholar 

  10. Vives-Rego J, Lebaron P, Nebe-von Caron G (2000). Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 24(4): 429-448.

    Google Scholar 

  11. Harris CM, Kell DB (1985). The estimation of microbial biomass. Biosensors 1: 17-84.

    Google Scholar 

  12. Cantinieaux B, Courtoy P, Fondu P (1993). Accurate flow cytometric measurement of bacteria concentrations. Pathobiology 61: 95-97.

    Google Scholar 

  13. Veal DA, Deere D, Ferrari B, Piper J, Attfield PV (2000). Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243(1-2): 191-210.

    Google Scholar 

  14. Pettipher GL (1991). Preliminary evaluation of flow cytometry for the detection of yeasts in soft drinks. Lett Appl Microbiol 12: 109-112.

    Google Scholar 

  15. Gunasekera TS, Attfield PV, Veal DA (2000). A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl Environ Microbiol 66(3): 1228-1232.

    Google Scholar 

  16. Jimenez L (2001). Rapid methods for the microbiological surveillance of pharmaceuticals. PDA J Pharm Sci Technol 55(5): 278-285.

    Google Scholar 

  17. Jespersen L, Lassen S, Jakobsen M (1993). Flow cytometric detection of wild yeast in lager breweries. Int J Food Microbiol 17: 321-328.

    Google Scholar 

  18. Attfield PV, Kletsas S, Veal DA, van Rooijen R, Bell PJL (2000). Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts. J Appl Microbiol 89(2): 207-214.

    Google Scholar 

  19. Hewitt CJ, Nebe-Von-Caron G (2001). An industrial application of multiparameter flow cytometry: Assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry 44(3): 179-187.

    Google Scholar 

  20. Delanghe JR, Kouri TT, Huber AR, Hannemann-Pohl K, Guder WG, Lun A, Sinha P, Stamminger G, Beier L (2000). The role of automated urine particle flow cytometry in clinical practice. Clin Chim Acta 301(1-2): 1-18.

    Google Scholar 

  21. Hannemann-Pohl K, Kampf SC (1999). Automation of urine sediment examination: A comparison of the sysmex UF-100 automated flow cytometer with routine manual diagnosis (microscopy, test strips, and bacterial culture). Clinical Chemistry and Laboratory Medicine 37(7): 753-764.

    Google Scholar 

  22. Eastham RD (1984). Clinical haematology, 6th ed. Bristol: John Wright and Sons.

    Google Scholar 

  23. Mansour JD, Robson JA, Arndt CW, Schulte TE (1985). Detection of Escherichia coliin blood using flow cytometry. Cytometry 6: 186-190.

    Google Scholar 

  24. Yi WC, Hsiao S, Liu JH, Soo PC, Horng YT, Tsai WC, Lai HC, Teng LJ, Hsueh PR, Hsieh RF, Luh KT, Ho SW (1998). Use of fluorescein labelled antibody and fluorescence activated cell sorter for rapid identification of Mycobacterium species. Biochem Biophys Res Commun 250(2): 403-408.

    Google Scholar 

  25. Shi W, Jewett A, Hume WR (1998). Rapid and quantitative detection of Streptococcus mutanswith species-specific monoclonal antibodies. Hybridoma 17(4): 365-371.

    Google Scholar 

  26. Hugenholtz P, Pace NR (1996). Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotech 14(6): 190-197.

    Google Scholar 

  27. Amann RI, Ludwig W, Schleifer KH (1995). Phylogenetic identification and in situdetection of individual microbial cells without cultivation. Microbiol Rev 59(1): 143-169.

    Google Scholar 

  28. Wallner H, Amann R, Beisker W (1993). Optimizing fluorescent in situhubridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136-143.

    Google Scholar 

  29. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56(6): 1919-1925.

    Google Scholar 

  30. Zarda B, Amann R, Wallner G, Schleifer KH (1991). Identification of single bacterial-cells using digoxigenin-labeled, ribosomal-RNA-targeted oligonucleotides. J Gen Microbiol 137(Pt12): 2823-2830.

    Google Scholar 

  31. Vesey G, Slade JS, Byrne M, Shepherd K, Fricker CR (1993). A new method for the concentration of Cryptosporidiumoocysts from water. J Appl Bacteriol 75: 82-86.

    Google Scholar 

  32. Ferrari BC, Vesey G, Davis KA, Gauci M, Veal D (2000). A novel two-color flow cytometric assay for the detection of Cryptosporidium in environmental water samples. Cytometry 41(3): 216-222.

    Google Scholar 

  33. Ingram M, Cleary TJ, Price BJ, Price RL, Castro A (1982). Rapid detection of Legionella pneumophilaby flow cytometry. Cytometry 3(2): 134-147.

    Google Scholar 

  34. Tyndall RL, Hand Jr. RE, Mann RC, Evans C, Jeringen R (1985). Application of flow cytometry to detection and characterization of Legionellaspp. Appl Environ Microbiol 49(4): 852-857.

    Google Scholar 

  35. Dando M (1994). Biological warfare in the 21st century. London: Brassey’s.

    Google Scholar 

  36. Davey HM, Kell DB (1997). Fluorescent brighteners: Novel stains for the flow cytometric analysis of microorganisms. Cytometry 28(4): 311-315.

    Google Scholar 

  37. Sincock SA, Kulaga H, Cain M, Anderson P, Stopa PJ (1999). Applications of flow cytometry for the detection and characterization of biological aerosols. Field Analytical Chemistry and Technology 3(4-5): 291-306.

    Google Scholar 

  38. Stopa PJ (2000). The flow cytometry of Bacillus anthracisspores revisited. Cytometry 41(4): 237-244.

    Google Scholar 

  39. Davey HM, Kell DB (2000). A portable flow cytometer for the detection and identification of microorganisms. In: Stopa PJ, Bartoszcze MA (eds), Rapid Methods for Monitoring the Environment for Biological Hazards. Dordrecht: Kluwer, pp 159-167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davey, H.M. Flow cytometric techniques for the detection of microorganisms. Methods Cell Sci 24, 91–97 (2002). https://doi.org/10.1023/A:1024106317540

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024106317540

Navigation