Skip to main content
Log in

Design Parameters of the Fan-Out Phase of Sensory Systems

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

This paper focuses on the calculation of boundary values for the design parameters in the fan-out phase of the olfactory system of insects. Three main criteria are taken into account to determine the boundaries of the parameters: (i) information conservation, (ii) low energy costs and (iii) full involvement of all the neurons. These criteria serve to determine the structural parameters that produce a sufficient minimal response. Analytical calculations lead to a few general expressions which show how the main internal parameters can be obtained for any system with similar characteristics. We calculate the optimal threshold for coincidence detection, connectivity and output activity values that verify criteria (i), (ii) and (iii). The range of parameter values obtained by these calculations include those observed in the olfactory system of the locust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HDI, Sejnowski TJ, Laurent G (2001a) Model of transient Design Parameters of the Fan-Out Phase of Sensory Systems 17 synchronization in the locust antennal lobe. Neuron 30: 553-567.

    Article  PubMed  Google Scholar 

  • Bazhenov M, Stopfer M, Rabinovich M, Abarbanel HDI, Sejnowski TJ, Laurent G (2001b) A model of cellular and network mechanisms for temporal patterning in the locust antennal lobe. Neuron 30: 569-581.

    Article  PubMed  Google Scholar 

  • Bi G, Poo M-M (1999) Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401(6755): 792-796.

    Article  PubMed  Google Scholar 

  • Carlson JR (2001) Viewing odors in the mushroom body of the fly. Trends of Neuroscience 24(9): 497-498.

    Article  Google Scholar 

  • Cover T (1965) Geometric and statistical properties of systems of linear in-equalities with applications in pattern recognition. IEEE Tran. Elect. Comput. 14: 326.

    Google Scholar 

  • Dubnau J, Grady L, Kitamoto T, Tully T (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411(N6836): 476-480.

    PubMed  Google Scholar 

  • Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27: 45-56.

    Article  PubMed  Google Scholar 

  • Földiak P, Young MP (1995) Sparse Coding in the Primate Cortex. The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge, MA, pp. 895-898.

    Google Scholar 

  • Gerstner W, Kempter R, Van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595): 76-78.

    Article  PubMed  Google Scholar 

  • Hebb D (1949) The Organization of Behavior. Wiley, New York.

    Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J. Comp. Physiol. Psychol. 41: 35-39.

    Google Scholar 

  • Kandell ER, Schwartz JH, Jessell TH (1991) Principles of Neural Science, 3rd edn. Elsevier, pp. 582-583.

  • Laurent G (1999) A systems perspective on early olfactory coding. Science 286: 723-728.

    Article  PubMed  Google Scholar 

  • Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: Experiments, computation, and theory. Annual Rev. Neurosci. 24: 263-297.

    Article  Google Scholar 

  • Markram H, Lubke J, Frotscher J, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213-215.

    PubMed  Google Scholar 

  • Mazor O, Pouzat C, Laurent G (2001) Firing statistics of simultaneously recorded olfactory projection neurons in the locust antennal lobe. (31st Annual Meeting of the Society for Neuroscience San Diego, California, USA November 10-15, 2001) Soc. for Neurosci. Abstr. 27(2): 1639.

    Google Scholar 

  • McCulloch WS, Pitts W (1943) A Logical Calculus of Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 5: 115-133.

    Google Scholar 

  • McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293(N5533): 1330-1333.

    Article  PubMed  Google Scholar 

  • Meister M, Berry II MJ (1999) The neural code of the retina. Neuron 22: 435-450.

    Article  PubMed  Google Scholar 

  • Moortgat KT, Keller CH, Bullock TH, Sejnowski TJ (1998) Submicrosecond pacemaker precision is behaviorally modulated: The gymnotiform electromotor pathway. Proc. Natl. Acad. Sci. 95: 4684.

    Article  PubMed  Google Scholar 

  • Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607-609.

    Article  PubMed  Google Scholar 

  • Pena JL, Viete S, Funabiki K, Saberi K, Konishi M (2001) Cochlear and neural delays for coincidence detection in owls. J. Neurosci. 21(23): 9455-9459.

    Google Scholar 

  • Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and the Sparsening of Odor Representations in the Mushroom Body. 297: 359-365.

    Google Scholar 

  • Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HDI, Laurent G (2001) Dynamical encoding by networks of competing neuron groups: Winnerless competition. Physical Review Letters 87(6): 068102/1-4.

    Article  Google Scholar 

  • Shepherd G (1998) The Synaptic Organization of the Brain, 4th edn. Oxford University Press. pp. 8-10.

  • Sterling P (1998) The Synaptic Organization of the Brain, 4th edn. edited by G. Shepherd. Oxford University Press. pp. 205-253.

  • Wang YL, Wright NJD, Guo HF, Xie ZP, Svoboda K, Malinow R, Smith DP, Zhong Y (2001) Genetic manipulation of the odorevoked distributed neural activity in the Drosophila mushroom body. Neuron 29(N1): 267-276.

    Article  PubMed  Google Scholar 

  • Yusuyama K, Meinertzhagen IA, Schurmann FW (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J. Comp. Neurol. 445(N3): 211-226.

    Article  PubMed  Google Scholar 

  • Zars T, Fischer M, Schulz R, Heisemberg M (2000) Localization of a short-term memory in Drosophila. Science 288: 672-675.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Sanchez, M., Huerta, R. Design Parameters of the Fan-Out Phase of Sensory Systems. J Comput Neurosci 15, 5–17 (2003). https://doi.org/10.1023/A:1024460700856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024460700856

Navigation