Skip to main content
Log in

Sialic Acid 9-O-Acetylesterase Catalyzes the Hydrolyzing Reaction from Alacepril to Deacetylalacepril

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. In this work, the alacepril thiolesterase, which catalyzes the hydrolyzing reaction of the thiolester linkage in alacepril and the conversion from alacepril to deacetylalacepril, was purified from rat liver cytosol and characterized.

Methods. A purification procedure for the thiolesterase consisted of ammonium sulfate fractionation and chromatographies with phenyl Sepharose CL-4B, Q Sepharose FF, ceramic hydroxylapatite, and phenyl Sepharose HP. The thiolesterase activity was assayed for alacepril as a substrate and the reaction product, deacetylalacepril, was measured using high-performance liquid chromatography.

Results. The purified thiolesterase is heterodimeric with a molecular mass of 29 and 36 kDa subunits as estimated by sodium dodecyl sulfate -polyacrylamide gel electrophoresis. N-terminal amino acid sequence of these subunits reveals that the thiolesterase is identical to sialic acid 9-O-acetylesterase. The thiolesterase hydrolyzes not only the thiolester bond in alacepril, spironolactone, and acetyl coenzyme A but also the carboxylester bond in α-naphtyl acetate. The alacepril thiolestrase activity is competitively inhibited by α-naphtyl acetate.

Conclusion. The thiolesterase, i.e., sialic acid 9-O-acetylesterase, seems to be involved in the metabolism of certain drugs such as alacepril and spironolactone. However, drugs having ester-type and amide-type linkages, for example dilazep, aniracetam, and benazepril, are not substrates for the thiolestrase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Ondetti, B. Rubin, and D. W. Cushman. Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents. Science 196:441-444 (1997).

    Google Scholar 

  2. K. Takeyama, H. Minato, F. Fukuya, S. Kawahara, K. Hosoki, and T. Kadokawa. Antihypertesive activity of alacepril, an orally active angiotensin converting enzyme inhibitor, in renal hypertensive rats and dogs. Arzneim-Forsch/Drug Res. 35:1502-1507 (1985).

    Google Scholar 

  3. K. Matsumoto, H. Miyazaki, T. Fujii, K. Yoshida, H. Amejima, and M. Hashimoto. Disposition and metabolism of the novel antihypertensive agent alacepril in rats. Arzneim-Forsch/Drug Res. 36:40-46 (1985).

    Google Scholar 

  4. P. Corvol, A. Michaud, F. Soubrier, and T. A. Williams. Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J. Hypertens. Suppl. 13:3-10 (1995).

    Google Scholar 

  5. F. M. Williams. Clinical significance of esterases in man. Clin. Pharmacokinet. 10:392-403 (1985).

    Google Scholar 

  6. M. S. Bogdanffy, R. Sarangapani, J. S. Kimbell, S. R. Frame, and D. R. Plowchalk. Analysis of vinyl acetate metabolism in rat and human nasal tissues by an in vitro gas uptake technique. Toxicol. Sci. 46:235-246 (1998).

    Google Scholar 

  7. S. Guichard, C. Terret, I. Hennebelle, I. Lochon, P. Chevreau, E. Fretigny, J. Selves, E. Chatelut, R. Bugat, and P. Canal. CPT-11 converting carboxylesterase and topoisomerase activities in tumor and normal colon and liver tissues. Br. J. Cancer 80:364-370 (1999).

    Google Scholar 

  8. F. Ahmed, V. Vyas, A. Cornfield, S. Goodin, T. S. Ravilumar, E. H. Rubin, and E. Gupta. In vitro activation of irinotecan to SN-38 by human liver and intestine. Anticancer Res. 19:2067-2071 (1999).

    Google Scholar 

  9. B. Yan, D. Yang, M. Brady, and A. Parkinson. Rat kidney carboxylesterase. Cloning, sequencing, cellular localization, and relationship to rat liver hydrolase. J. Biol. Chem. 269:29688-29696 (1994).

    Google Scholar 

  10. T. Yamada, N. Kawaguchi, M. Hosokawa, and T. Satoh. Location of an isoform of carboxylesterase in rat brain differs from that in human brain. Brain Res. 674:175-177 (1995).

    Google Scholar 

  11. H. Schwer, T. Langmann, R. Daig, A. Becker, C. Aslanidis, and G. Schmitz. Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem. Biophys. Res. Commun. 233:117-120 (1997).

    Google Scholar 

  12. B. Yan, L. Matoney, and D. Yang. Human carboxylesterase in term placenta: enzymatic characterization, molecular cloning and evidence for the existence of multiple forms. Placenta 20:599-607 (1999).

    Google Scholar 

  13. Y. H. Park and S. S. Lee. Identification and characterization of capsocin-hydrolyzing enzymes purified from rat liver microsomes. Biochem. Mol. Biol. Int. 34:351-360 (1994).

    Google Scholar 

  14. T. Satoh, M. Hosokawa, R. Atsumi, W. Suzuki, H. Hakusui, and E. Nagai. Metabolic activation of CPT-11,7-ethyl-10-[4-(1-piperidino)-1-piperidine] carbonyloxycamptothecin, a novel anticancer agent, by carboxylesterase. Biol. Pharm. Bull. 17:662-664 (1994).

    Google Scholar 

  15. R. Mentlein and E. Heymann. Hydrolysis of ester-and amide-type drugs by the purified isoenzymes of nonspecific carboxylesterase from rat liver. Biochem. Pharmacol. 33:1243-1248 (1984).

    Google Scholar 

  16. H. Yan and J. J. Harding. Inactivation and loss of antigenicity of esterase by sugar and a steroid. Biochim. Biophys. Acta 1454:183-190 (1999).

    Google Scholar 

  17. M. Hosokawa and T. Satoh. Differences in the induction of carboxylesterase isozymes in rat liver microsomes by perfluorinated fatty acids. Xenobiotica 23:1125-1133 (1993).

    Google Scholar 

  18. M. Lotti and A. Moretto. Promotion of organophosphate induced delayed polyneuropathy by esterase inhibitors. Chem. Biol. Interact. 199-120:519-524 (1999).

    Google Scholar 

  19. R. Zech, R. M. Severin, J. M. Chemnitius, and K. Nebendahl. Paraoxonase polymorphism in rabbits. Chem. Biol. Interact. 119-120:283-288 (1999).

    Google Scholar 

  20. M. Hosokawa, K. Suzuki, D. Takahashi, M. Mori, T. Satoh, and K. Chiba. Purification, molecular cloning, and functional expression of dog liver microsomal acyl-CoA hydrolase: a member of the carboxylesterase multigene family. Arch. Biochem. Biophys. 389:245-253 (2001).

    Google Scholar 

  21. L. Luan, T. Sugiyama, S. Takai, Y. Usami, T. Adachi, Y. Katagiri, and K. Hirano. Purification and characterization of pranlukast hydrolase from rat liver microsomes: the hydrolase is identical to carboxylesterase pI 6.2. Biol. Pharm. Bull. 20:71-75 (1997).

    Google Scholar 

  22. K. Terashima, S. Takai, Y. Usami, T. Adachi, T. Sugiyama, Y. Katagiri, and K. Hirano. Purification and partial characterization of an indomethacin hydrolyzing enzyme from pig liver. Pharm. Res. 13:1327-1335 (1996).

    Google Scholar 

  23. M. Sugiura, Y. Iizumi, T. Adashi, Y. Ito, K. Hirano, and S. Sawaki. Studies on human urinary and renal esterases that migrate to the Γ-globulin #x00AEion upon cellulose acetate electrophoresis. Chem. Pharm. Bull. 29:2920-2927 (1981).

    Google Scholar 

  24. R. L. Prass, F. Isohashi, and M. F. Utter. Purification and characterization of an extramitochondrial acetyl coenzyme A hydrolase form rat liver. J. Biol. Chem. 255:5215-5223 (1980).

    Google Scholar 

  25. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275 (1951).

    Google Scholar 

  26. U. K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:689-695 (1970).

    Google Scholar 

  27. I. Towbin, T. Staehelin, and J. Gordon. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350-4354 (1979).

    Google Scholar 

  28. M. Hosokawa, T. Maki, and T. Satoh. Multiplicity and #x00AEulation of hepatic microsomal carboxylesterase in rats. Mol. Pharmacol. 31:579-584 (1987).

    Google Scholar 

  29. R. Mentlein, A. Ronai, M. Robbi, E. Heymann, and O. von Deimling. Genetic identification of rat liver carboxylesterases isolated in different laboratories. Biochim. Biophys. Acta 913:27-38 (1987).

    Google Scholar 

  30. E. W. Morgan, B. Yan, D. Greenway, D. R. Petersen, and A. Perkinson. Purification and characterization of two rat liver microsomal carboxylesterases (hydrolase A and B). Arch. Biochem. Biophys. 315:495-512 (1994).

    Google Scholar 

  31. B. Yan, D. Yang, and Perkinson. Cloning and expression of hydrolase C, a member of the rat carboxylesterase family. Arch. Biochem. Biophys. 317:222-234 (1995).

    Google Scholar 

  32. C. Butor, H. H. Higa, and A. Varki. Structural, immunological, and biosynthetic studies of a sialic acid-specific O-acetylesterase from rat liver. J. Biol. Chem. 268:10207-10213 (1993).

    Google Scholar 

  33. M. J. Guimaraes, J. F. Bazan, J. Castagnola, S. Diaz, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, A. Varki, and A. Zlotnik. Molecular cloning and characterization of lysosomal sialic acid O-acetylesterase. J. Biol. Chem. 271:13697-13705 (1996).

    Google Scholar 

  34. H. H. Higa, A. Manzi, and A. Varki. O-acetylation and de-O-acetylation of sialic acids. Purification, characterization of a glycosylated rat liver esterase specific for 9-O-acetylated sialic acids. J. Biol. Chem. 264:19435-19442 (1989).

    Google Scholar 

  35. R. Schauer. Sialic acids: metabolism of O-acetyl groups. Methods Enzymol. 138:611-626 (1987).

    Google Scholar 

  36. H. Tatematsu, S. Diaz, A. Stoddart, Y. Zhang, and A. Varki. Lysosomal and cytosolic sialic acid 9-O-acetylesterase activities can be encoded by one gene via differential usage of a single peptide-encoding exon at the N ter#x2014. J. Biol. Chem. 274:25623-25631 (1999).

    Google Scholar 

  37. H. H. Higa, C. Butor, S. Diaz, and A. Varki. O-acetylation and de-O-acetylation of sialic acids. O-acetylation of sialic acids in the rat liver golgi apparatus involves an acetyl intermediate and essential histidine and lysine residues-a transmembrane reaction? J. Biol. Chem. 264:19427-19434 (1989).

    Google Scholar 

  38. B. K. Hayes and A. Varki. O-acetylation and de-O-acetylation of sialic acids. Sialic acid esterases of diverse evolutionary origins have serine active sites and essential arginine residues. J. Biol. Chem. 264:19443-19448 (1989).

    Google Scholar 

  39. R. Schauer, G. Reuter, and S. Stoll. Sialate O-acetylesterases: key enzymes in sialic acid catabolism. Biochimie 70:1511-1519 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Hirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usui, S., Kubota, M., Iguchi, K. et al. Sialic Acid 9-O-Acetylesterase Catalyzes the Hydrolyzing Reaction from Alacepril to Deacetylalacepril. Pharm Res 20, 1309–1316 (2003). https://doi.org/10.1023/A:1025073720126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025073720126

Navigation