Skip to main content
Log in

Chemical structure and glass transition temperature of non-ionic cellulose ethers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Glass transitions of several non-ionic cellulose ethers differing in molecular mass and nature and amount of substituents were analyzed (as compressed probes) by differential scanning calorimetry (DSC), modulated temperature differential scanning calorimetry (TMDSC@®), and oscillatory rheometry. In general, the low energy transitions accompanying the Tg of methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), and hydroxypropylcelluloses of low (L-HPC) or medium-high (HPC) degree of substitution were difficult to characterize using DSC. Non-reversing heat flow signals obtained in TMDSC experiments were more sensitive. However, the best resolution was obtained using oscillatory rheometry since these cellulose ethers undergo considerable changes in their storage and loss moduli when reaching the Tg. Oscillatory rheometry also appears as a useful technique to characterize the viscoelastic behavior and thermal stability of pharmaceutical tablets. Tg values followed the order HPC (105°C)<HPMC (170-198°C)<MC (184-197°C)<L-HPC (220°C). For HPMCs, the Tg increases as the methoxyl/hydroxypropoxyl content ratio decreases. The results indicate that Tg depends strongly on the structure of the cellulose ethers. In general, increasing the degree of substitution of cellulosic hydroxyls, the hydrogen bonding network of cellulose decreases (especially when the substituents cannot form hydrogen bonds) and, in consequence, Tg also decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Sálmen and E. L. Back, Tappi, 60 (1977) 137.

    Google Scholar 

  2. A. O. Okhamafe and P. York, J. Pharm. Sci., 77 (1988) 438.

    CAS  Google Scholar 

  3. K. Van der Voort Maarschalk, H. Vromans, G. K. Bolhuis and C. F. Lerk, Drug Dev. Ind. Pharm., 24 (1998) 261.

    Article  Google Scholar 

  4. L.-M. Her and S. L. Nail, Pharm. Res., 11 (1994) 54.

    Article  CAS  Google Scholar 

  5. M. C. Ferrero, M. V. Velasco, J. L. Ford, A. R. Rajabi-Siahboomi, A. Muñoz and M. R. Jiménez-Castellanos, Pharm. Res., 16 (1999) 1464.

    Article  CAS  Google Scholar 

  6. M. O. Omelczuk and J. W. McGinity, Pharm. Res., 10 (1993) 542.

    Article  CAS  Google Scholar 

  7. R. W. Korsmeyer and N. A. Peppas, J. Membr. Sci., 9 (1981) 211.

    Article  CAS  Google Scholar 

  8. B. C. Hancock and G. Zografi. Pharm. Res., 11 (1994) 471.

    Article  CAS  Google Scholar 

  9. R. Nair, N. Nyamweya, S. Gönen, L. J. Martínez-Miranda and S. W. Hoag, Int. J. Pharm., 225 (2001) 83.

    Article  CAS  Google Scholar 

  10. M. Schubnell and J. E. K. Schawe, Int. J. Pharm., 217 (2001) 173.

    Article  CAS  Google Scholar 

  11. C. Alvarez-Lorenzo, J. L. Gómez-Amoza, R. Martínez-Pacheco, C. Souto and A. Concheiro, Eur. J. Pharm. Biopharm., 50 (2000) 307.

    Article  CAS  Google Scholar 

  12. N. Nyamweya and S. W. Hoag, Pharm. Res., 17 (2000) 625.

    Article  CAS  Google Scholar 

  13. T. T. Kararli, J. B. Hurbult and T. E. Needham, J. Pharm. Sci., 79 (1990) 845.

    CAS  Google Scholar 

  14. N. J. Coleman and D. Q. M. Craig, Int. J. Pharm., 135 (1996) 13.

    Article  CAS  Google Scholar 

  15. E. Verdonck, K. Schaap and L. C. Thomas, Int. J. Pharm., 192 (1999) 3.

    Article  CAS  Google Scholar 

  16. V. L. Hill, D. Q. M. Craig and L. C. Feely, Int. J. Pharm., 192 (1999) 21.

    Article  CAS  Google Scholar 

  17. H. McPhillips, D. Q. M. Craig, P. G. Royall and V. L. Hill, Int. J. Pharm., 180 (1999) 83.

    Article  CAS  Google Scholar 

  18. S. Suto, M. Kudo and M. Karasawa, J. Appl. Polym. Sci., 31 (1986) 1327.

    Article  CAS  Google Scholar 

  19. J. Rieger, Polymer Testing, 20 (2001) 199.

    Article  CAS  Google Scholar 

  20. C. Alvarez-Lorenzo, H. Hiratani, J. L. Gómez-Amoza, R. Martínez-Pacheco, C. Souto and A. Concheiro, J. Pharm. Sci., 91 (2002) 2182.

    Article  CAS  Google Scholar 

  21. A. Danch, J. Thermal. Anal. Cal., 65 (2001) 525.

    Article  CAS  Google Scholar 

  22. C. Alvarez-Lorenzo, R. A. Lorenzo-Ferreira, J. L. Gómez-Amoza, R. Martínez-Pacheco, C. Souto and A. Concheiro, J. Pharm. Biomed. Anal., 20 (1999) 373.

    Article  CAS  Google Scholar 

  23. K. M. Picker and S. W. Hoag, J. Pharm. Sci., 91 (2002) 342.

    Article  CAS  Google Scholar 

  24. P. Sakellariou, R. C. Rowe and E. F. T. White, Int. J. Pharm., 34 (1986) 93.

    Article  CAS  Google Scholar 

  25. L. Carpentier, L. Bourgeois and M. Descamps, J. Therm. Anal. Cal., 68 (2002) 727.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Carracedo, A., Alvarez-Lorenzo, C., Gómez-Amoza, J.L. et al. Chemical structure and glass transition temperature of non-ionic cellulose ethers. Journal of Thermal Analysis and Calorimetry 73, 587–596 (2003). https://doi.org/10.1023/A:1025434314396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025434314396

Navigation