Skip to main content
Log in

Coexpression of IGF-1R and c-Src Proteins in Human Pancreatic Ductal Adenocarcinoma

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Aberrant c-Src protein kinase activation has been identified as one of the molecular alterations involved in human pancreatic carcinogenesis. It has been postulated that c-Src may induce transformation by causing the overexpression of the insulinlike growth factor-1 receptor (IGF-1R) in pancreatic tumor cell lines. To further study the interaction between c-Src and IGF-1R proteins in human pancreatic cancer, we examined their coexpression in 47 human pancreatic ductal adenocarcinomas (PDA). Formalin-fixed, paraffin-embedded sections from 47 cases of PDA were stained using the immunohistochemical avidin–biotin–peroxidase method. We used an anti-human IGF-1R mouse monoclonal antibody (dilution 1:100 with antigen retrieval), and an anti-c-Src mouse monoclonal antibody (dilution 1:100 with antigen retrieval). The stains were semiquantitatively evaluated using the Allred score system, assessing intensity of stain and percentage of positive tumor cells. High cytoplasmic c-Src expression (Allred score 7–8) was seen in 33/47 (70%) tumors. In only 4 cases was c-Src either negative or low (Allred score 3). Strong and diffuse membranous IGF-1R stain (Allred score 7–8) was identified in 30/47 (64%) tumors. IGF-1R staining was low (Alled score 2–4) in 2 cases and negative in 1. Interestingly, in 40/47 (85%) cases c-Src and IGF-1R stains had similar scores. An inverse staining pattern was detected in only 6/47 (13%) tumors. Normal pancreatic ducts as well as areas of chronic pancreatitis were negative for IGF-1R. In conclusion, our data support the role of IGF-1R and c-Src in human pancreatic carcinogenesis; the coexpression of both these molecules may play an important role in transformation of pancreatic ductal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gudjonsson B: Survival statistics gone awry: pancreatic cancer, a case in point. J Clin Gastroenterol 35(2): 180-184, 2002

    Google Scholar 

  2. Brooks JR, Culebras JM: Cancer of the pancreas, palliative operation, Whipple procedure, or total pancreatectomy. Am J Surg 131(4):516-520, 1976

    Google Scholar 

  3. Baylor SM, Berg JW: Cross-classification and survival characteristics of 5,000 cases of cancer of pancreas. J Surg Oncol 5:335-358, 1973

    Google Scholar 

  4. Poston GJ: Biology of pancreatic cancer. Gut 32:800-812, 1991

    Google Scholar 

  5. Jemal A, Thomas A, Murray T, Thun M: Cancer statistics, 2002. Ca Cancer J Clin 52:23-47, 2002

    Google Scholar 

  6. DiGiuseppe JA, Hruban RH, Goodman SN, Polak M, van den Berg FM, Alison DC, Cameron JL, Offerhavs GJ: Overexpression of p53 protein in adenocarcinoma of the pancreas. Am J Clin Pathol 101:684-688, 1994

    Google Scholar 

  7. Lundin J, Nordling S, von Boguslawsky K, Roberts PJ, Haglund C: Prognostic value of immunohistochemical expression of p53 in patients with pancreatic cancer. Oncology 53:104-111, 1996

    Google Scholar 

  8. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim M, Perucho M: Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549-554, 1988

    Google Scholar 

  9. Gotoda T, Matsumura Y, Kondo H, Saitoh D, Shimada Y, Kosuge T, Kanai Y, Kakizoe T: Expression of CD44 variants and its association with survival in pancreatic cancer. Jpn J Cancer Res 89(10):1033-1140, 1998

    Google Scholar 

  10. Castella EM, Ariza A, Ojanguren I, Mate JL, Roca X, Fernandez-Vasalo A, Navas-Palacios JJ: Differential expression of CD44v6 in adenocarcinoma of the pancreas: an immunohistochemical study. Virchows Arch 429(4-5): 191–5, 1996

    Google Scholar 

  11. Tumminello FM, Leto G, Pizzolanti G, Candiloro V, Crescimanno M, Crosta L, Flandina C, Montalto G, Soresi M, Carroccio A, Bascone F, Ruggeri I, Ippolito S, Gebbia N: Cathepsin D, B and L circulating levels as prognostic markers of malignant progression. Anticancer Res 16(4B):2315-2319, 1996

    Google Scholar 

  12. Pelosi G, Pasini F, Bresaola E, Bogina G, Pederzoli P, Biolo S, Menard S, Zamboni G: High-affinity monomeric 67-kD laminin receptors and prognosis in pancreatic endocrine tumours. J Pathol 183(1):62-69, 1997

    Google Scholar 

  13. Cantero D, Friess H, Deflorin J, Zimmermann A, Brundler MA, Riesle E, Korc M, Buchler MW: Enhanced expression of urokinase plasminogen activator and its receptor in pancreatic carcinoma. Br J Cancer 75(3):388-395, 1997

    Google Scholar 

  14. Miyamoto Y, Hosotani R, Wada M, Lee JU, Koshiba T, Fujimoto K, Tsuji S, Nakajima S, Doi R, Kato M, Shimada Y, Imamura M: Immunohistochemical analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 expression in pancreatic cancers. Oncology 56(1):73-82, 1999

    Google Scholar 

  15. Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, Kern SE, Hruban RH: Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 60(7):2002-6, 2000

    Google Scholar 

  16. Barton CM, Hall PA, Hughes CM, Gullick WJ, Lemoine NR: Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer. J Pathol 163:111-116, 1991

    Google Scholar 

  17. Korc M, Meltzer P, Trent J: Enhanced expression of epidermal growth factor receptor correlates with alterations of chromosome 7 in human pancreatic cancer. Proc Natl Acad Sci USA 83:5141-5144, 1986

    Google Scholar 

  18. Szepeshazi K, Halmos G, Schally AV, Arencibia JM, Groot K, Vadillo-Buenfil M, Rodriguez-Martin E: Growth inhibition of experimental pancreatic cancers and Sustained reduction in epidermal growth factor receptors during therapy with hormonal peptide analogs. J Cancer Res Clin Oncol 125(8–9):444-452, 1999

    Google Scholar 

  19. Alexandrow MG, Moses HL: Transforming growth factor beta and cell cycle regulation. Cancer Res 55(7):1452-1457, 1995

    Google Scholar 

  20. Wagner M, Kleeff J, Friess H, Buchler MW, Korc M: Enhanced expression of the type II transforming growth factor-beta receptor is associated with decreased survival in human pancreatic cancer. Pancreas 19(4):370-376, 1999

    Google Scholar 

  21. Kornmann M, Tangvoranuntakul P, Korc M: TGF-beta-1 up-regulates cyclin D1 expression in COLO-357 cells, whereas suppression of cyclin D1 levels is associated with down-regulation of the type I TGF-beta receptor. Int J Cancer 83(2):247-254, 1999

    Google Scholar 

  22. Bergmann U, Funatomi H, Yokoyama M, Berger HG, Korc M: Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracine roles. Cancer Res 55(10):2007-11, 1995

    Google Scholar 

  23. Ohmura E, Okada M, Onoda N, Kamiya Y, Murakami H, Tsushima T, Shizume K: Insulin-like growth factor I and transforming growth factor alpha as autocrine growth factors in human pancreatic cancer cell growth. Cancer Res 50(1):103-107, 1990

    Google Scholar 

  24. Flossmann-Kast BB, Jehle PM, Hoeflich A, Adler G, Lutz MP: Src stimulates insulin-like growth factor I (IGF-I)-dependent cell proliferation by increasing IGF-I receptor number in human pancreatic carcinoma cells. Cancer Res 58(16):3551-3554, 1998

    Google Scholar 

  25. Cartwright CA, Kamps MP, Meisier AI, Pipas JM, Eckhart W: pp60c-src activation in human colon carcinoma. J Clin Invest 83:2025-2033, 1989

    Google Scholar 

  26. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R: Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20(20):2499-2513, 2001

    Google Scholar 

  27. Masaki T, Tokuda M, Shiratori Y, Shirai M, Matsumoto K, Nishioka M, Omata M: A possible novel src-related tyrosine kinase in cancer cells of LEC rats that develop hepatocellular carcinoma. J Hepatol 32(1):92-9, 2000

    Google Scholar 

  28. Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ: Activating Src mutation in a subset of advanced human colon cancers. Nat Genet 21(2): 187-190, 1999

    Google Scholar 

  29. Lutz MP, Esser IB, Flossmann-Kast BB, Vogelmann R, Luhrs H, Friess H, Buchler MW, Adler G: Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun 243(2):503-8, 1998

    Google Scholar 

  30. MacMillan-Crow LA, Greendorfer JS, Vickers SM, Thompson JA: Tyrosine nitration of c-Src tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch Biochem Biophys 377(2):350-356, 2000

    Google Scholar 

  31. Kozma LM, Reynolds AB, Weber MJ: Glycoprotein tyrosine phosphorylation in Rous Sarcoma virus-transformed chicken embryo fibroblasts. Mol Cell Biol 10:837-841, 1990

    Google Scholar 

  32. Peterson JE, Jelinek T, Kaleko M, Weber M: C-phosphorylation and activation of the IGF-1 receptor in src-transformed cells. J Biol Chem 269:27315-27321, 1994

    Google Scholar 

  33. Peterson JE, Kulik G, Jelinek T, Reuter CW, Shannon JA, Weber MJ: Src phosphorylates the insulin-like growth factor type I receptor on the auto-phosphorylation sites. Requirement for transformation by src. J Biol Chem 271(49):31562-31571, 1996.

    Google Scholar 

  34. Allred DC, Clark GM, Ellfdge R, Fuqua SAW, Brown RW, Chambers GC, Osborne CK, McGuire WL: Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst 85:200-206, 1993

    Google Scholar 

  35. Kalthoff H, Schmiegel W, Roeder C, et al: p53 and K-ras alterations in pancreatic epithelial cell lesions. Oncogene 8:289-298, 1993

    Google Scholar 

  36. Ruggeri B, Zhang S, Caamano J, et al: Human pancreatic cancer reveals frequent and multiple alterations in the p53 and RB-1 tumor suppressors genes. Proc Annu Meet Am Assoc Cancer Res 33:A2320, 1992

    Google Scholar 

  37. Hunter T: A tale of two src's: mutatis mutandis. Cell 49:1-4, 1987

    Google Scholar 

  38. Cooper JA, Howell B: The when and how of src regulation. Cell 73:1051-1054, 1993

    Google Scholar 

  39. Xu W, Harrison SC, Eck MJ: Three-dimensional structure of the tyrosine kinase c-Src. Nature 385:595-602, 1997

    Google Scholar 

  40. Iravani S, Mao Weiguang, Ling F, Karl R, Yeatman T, Jove R, Coppola D: Elevated c-Src protein expression is an early event in colonic neoplasia. Lab Invest 78:365-371, 1998

    Google Scholar 

  41. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, LeBon T, Kahuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita Yamaguchi Y: Insulin-like growth factor 1 receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503-2512, 1986

    Google Scholar 

  42. White MF, Kahn CR: The insulin signaling system. J Biol Chem 269:1-4, 1994

    Google Scholar 

  43. Myers MG, Sun XJ, Cheatham B, Jachna BR, Glasheen EM, Backer JM, White MF: IRS-1 is a common element in insulin and insulin-like growth factor-1 signaling to the phosphatidylinositol 3”-kinase. Endocrinology 132:1421-1430, 1993

    Google Scholar 

  44. Rubin R, Baserga R: Biology of disease: insulin-like growth factor-1 receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab Invest 73:311-331, 1995

    Google Scholar 

  45. Baserga R. Controlling IGF-receptor function: a possible strategy for tumor therapy. Trends Biotechnol 14:150-152, 1996

    Google Scholar 

  46. Resnicoff M, Abraham D, Yutanawiboonchai W, Rotman HL, Kajstura J, Rubin R, Zoltick P, Baserga R: The insulin-like growth factor 1 receptor protects tumor cells from apoptosis in vivo. Cancer Res 55:2463-2469, 1995

    Google Scholar 

  47. O'Connor R, Kauffmann-Zeh A, Liu Y, Lehar S, Evan GI, Baserga R, Blattler WA: Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol Cell Biol 17:427-435, 1997

    Google Scholar 

  48. Harrington EA, Bennett MR, Fanidi A, Evan GI: c-Myc induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J 13:3286-3295, 1994

    Google Scholar 

  49. Valentinis B, Morrione A, Taylor SJ, Baserga R: Insulin-like growth factor I receptor signaling in transformation by src oncogenes. Mol Cell Biol. 17(7):3744-3754, 1997

    Google Scholar 

  50. Visser CJ, Rijksen G, Wuotersen RA, DeGeger RA: Increased immunoreactivity and protein tyrosine kinase activity of the protooncogene pp60c-src in preneoplastic lesions in rat pancreas. Lab Invest 74(1):2-11, 1996

    Google Scholar 

  51. MacMillan-Crow LA, Greendorfer JS, Vickers SM, Thompson JA: Tyrosine nitration of c-Src tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch Biochem Biophys 377(2):350-356, 2000

    Google Scholar 

  52. Freeman JM, Mattingly CA, Strodel WE: Increase tumorigenicity in the human pancreatic cell line MIA PaCa-2 is associated with an aberrant regulation of an IGF-1 autocrine loop and lack of expression of the TGF-beta type RII receptor. J Cell Physiol 165(1):155-163, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakam, A., Fang, Q., Karl, R. et al. Coexpression of IGF-1R and c-Src Proteins in Human Pancreatic Ductal Adenocarcinoma. Dig Dis Sci 48, 1972–1978 (2003). https://doi.org/10.1023/A:1026122421369

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026122421369

Navigation