Skip to main content
Log in

Targeting the Over-Expressed Urokinase-Type Plasminogen Activator Receptor on Glioblastoma Multiforme

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

A recombinant fusion protein targeting the urokinase-type plasminogen activator receptor (uPAR) and delivering a potent catalytic toxin has the advantage of simultaneously targeting both over-expressed uPAR on glioblastoma cells and on the tumor neovasculature. Such a hybrid protein was synthesized consisting of the noninternalizing amino-terminal fragment (ATF) of urokinase-type plasminogen activator (uPA) for binding, and the catalytic portion of diphtheria toxin (DT) for killing, and the translocation enhancing region (TER) of DT for internalization. The protein was highly selective for human glioblastoma in vitro and in vivo. In vivo, this DT/ATF hybrid called DTAT caused the regression of small subcutaneous uPAR-expressing tumors with minimal toxicity to critical organs. In vitro, DTAT killed only uPAR-positive glioblastoma cell lines and human endothelial cells in the form of the HUVEC cell line. Killing was selective and blockable with specific antibody. DTAT was highly effective against tumor cells cultured from glioblastoma multiforme patients and in vitro mixing experiments combining DTAT with DTIL13 another highly effective anti-glioblastoma agent showed that the mixture was as toxic as the most potent immunotoxin. In this article, we review our progress to date with DTAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salcman M: Epidemiology and factors affecting survival. In: Appuzo MLJ (ed) Malignant Cerebral Glioma. American Association of Neurological Surgeons, Park Ridge, Il 1980, pp 95–110

    Google Scholar 

  2. Frankel SA, German WJ: Glioblastoma multiforme (review of 219 cases with regard to natural history, pathology, diagnostic methods, and treatment). J Neurosurg 15: 489–503, 1985

    Google Scholar 

  3. Walker AE, Robins M, Weinfeld FD: Epidemiology of brain tumors: the national survey of intracranial neoplasms. Neurology 35: 219–226, 1985

    Google Scholar 

  4. Mahaley MS, Mettlin C, Natarajan N, Laws ER, Peace BB: National survey patterns of care for brain-tumor patients. J Neurosurg 71: 826–836, 1989

    Google Scholar 

  5. Davies E, Clarke C, Hopkins A: Malignant cerebral glioma-I: survival, disability, and morbidity after radiotherapy. Br Med J 313: 1507–1512, 1996

    Google Scholar 

  6. Rutigliano MJ, Lunsford LD, Kondziolka D et al.: The cost effectiveness of stereotactic radiosurgery versus surgical resection in the treatment of solitary metastatic brain tumors. Neurosurgery 37: 445–455, 1995

    Google Scholar 

  7. Kirby S, Macdonald D, Fisher B et al.: Pre-radiation chemotherapy for malignant glioma in adults. Can J Neurol Sci 23: 123–127, 1996

    Google Scholar 

  8. Kristensen CA, Kristjansen PE, Hansen HH: Systemic chemotherapy of brain metastases from small-cell lung cancer: a review. J Clin Oncol 10: 1498–1502, 1992

    Google Scholar 

  9. McAllister LD, Doolittle ND, Gustadisegni PE et al.: Cognitive outcomes and long-term follow-up after enhanced chemotherapy delivery for primary central nervous system lymphomas. Neurosurgery 46: 51–61, 2000

    Google Scholar 

  10. Oddens EA, Shapiro WR: Brain tumors. Cancer Chemo Biol Response Modif 12: 615–633, 1991

    Google Scholar 

  11. Packer RJ: Chemotherapy for medulloblastoma/primitive neuroectodermal tumors of the posterior fossa. Ann Neurol 28: 823–828, 1990

    Google Scholar 

  12. Tomlinson FH, Scheithauer BW, Meyer FB et al.: Medulloblastoma I. Clinical, diagnostic, and therapeutic overview. J Child Neurol 7: 142–155, 1992

    Google Scholar 

  13. Williams PC, Henner WD, Roman-Goldstein S, Dahlborg SA et al.: Toxicity and efficacy of carboplatin and etoposide in conjunction with disruption of the blood– brain barrier in the treatment of intracranial neoplasms. Neurosurgery 37: 17–28, 1995

    Google Scholar 

  14. Walker MD, Green SB, Byar DP et al.: Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303: 1323–1329, 1980

    Google Scholar 

  15. Nazarro JM, Neuwalt EA: The role of surgery in the management of supratentorial intermediate and high-grade astrocytomas in adults. J Neurosurg 73: 331–344, 1990

    Google Scholar 

  16. Salcman M: The morbidity and mortality of brain tumors. A perspective on recent advances in therapy. Neurol Clin 3: 229–257, 1985

    Google Scholar 

  17. Shapiro WR: Treatment of neuroectodermal brain tumors. Ann Neurol 12: 231–237, 1982

    Google Scholar 

  18. Hall WA, Djalilian HR, Sperduto PW, Cho KW et al.: Stereotactic radiosurgery for recurrent malignant gliomas. J Clin Oncol 13: 1642–1648, 1995

    Google Scholar 

  19. Hall WA, Fodstad Ø: Immunotoxins and central nervous system neoplasias. J Neurosurg 76: 1–12, 1992

    Google Scholar 

  20. Gonzalez-Vitale J, Garcia-Bunnuel R: Meningeal carcinomatosis. Cancer 37: 2906–2911, 1976

    Google Scholar 

  21. Olson M, Chernik N, Posner J: Infiltration of the leptomeninges by systemic cancer. A clinical and pathologic study. Arch Neurol 30: 122–137, 1974

    Google Scholar 

  22. Muraszko K, Sung C, Walbridge S, Greenfield L et al.: Pharmacokinetics and toxicology of immunotoxins administered into the subarachnoid space in nonhuman primates and rodents. Cancer Res 53: 3752–3757, 1993

    Google Scholar 

  23. Bindal RK, Sawaya R, Leavens ME, Lee JJ: Surgical treatment of multiple brain metastases. J Neurosurg 79: 210–216, 1993

    Google Scholar 

  24. Nussbaum ES, Djalilian HR, Hall WA: Brain metastases: histology, multiplicity, surgery, and survival. Cancer 78(8): 1781–1788, 1996

    Google Scholar 

  25. Patchell RA, Tibbs PA, Walsh JW et al.: A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322: 494–500, 1990

    Google Scholar 

  26. Greene GM, Hitchon PW, Schelper RL, Yuh W, Dyste GN: Diagnostic yield in CT-guided stereotactic biopsy of gliomas. J Neurosurg 71: 494–497, 1989

    Google Scholar 

  27. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA et al.: Imaging-based stereotactic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66: 865–874, 1987

    Google Scholar 

  28. Burger PC, Heinz ER, Shibata T, Kleihues P: Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 68: 698–704, 1988

    Google Scholar 

  29. Bergstrom M, Collins P, Ehrin E: Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga] EDTA, [11C] glucose, and [11C] methionine. J Comput Assist Tomogr 7: 1062–1066, 1983

    Google Scholar 

  30. Earnest F, Kelly PJ, Scheithauer BW, Kall BA et al.: Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 166: 823–827, 1988

    Google Scholar 

  31. Kroll RA, Neuwelt EA: Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42(5): 1083–1099, 1998

    Google Scholar 

  32. Skipper H: Historic milestones in cancer biology: a few that are important to cancer treatment (revisited). Semin Oncol 6: 506–514, 1979

    Google Scholar 

  33. Morrow C, Cowan K: Drug resistance and cancer. Adv Exp Med Biol 330: 287–305, 1993

    Google Scholar 

  34. Frankel AE, Kreitman RJ, Sausville EA: Targeted toxins. Clin Cancer Res 6: 326–333, 2000

    Google Scholar 

  35. Shockley TR, Lin K, Sung C, Nagy JA, Tompkins RG, Dedrick RL, Dvorak HF, Yarmush ML: A quantitative analysis of tumor-specific monoclonal antibody uptake by human melanoma xenografts: effects of antibody immunological properties and tumor antigen expression levels. Cancer Res 52: 357–366, 1992

    Google Scholar 

  36. Sung C, Shockley TR, Morrison PF, Dvorak HF, Yarmush ML, Dedrick RL: Predicted and observed effects of antibody affinity and antigen density on monoclonal antibody uptake in solid tumors. Cancer Res 52: 377–384, 1992

    Google Scholar 

  37. Baxter LT, Yuan F, Jain RK: Pharmacokinetic analysis of the perivascular distribution of bifunctional antibodies and 72 haptens: comparison with experimental data. Cancer Res 52: 5838–5844, 1992

    Google Scholar 

  38. Jain RK: Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 81: 1989

  39. Oldfield EH, Youle RJ: Immunotoxins for brain tumor therapy. Curr Top Microbiol Immunol 234: 97–114, 1998

    Google Scholar 

  40. Ehlrich P: The relationship between chemical constitution, distribution, and pharmacological action. In: Himmelweit F, Marquardt M, Dale H (eds) The Collected Papers of Paul Ehrlich, vol 1, Pergamon Press, Elmsford, NY, 1956, pp 596–618

    Google Scholar 

  41. Jansen FK, Blythman HE, Carriere D et al.: Immunotoxins: hybrid molecules combining high specificity and potent cytotoxicity. Immunol Rev 62: 185–216, 1982

    Google Scholar 

  42. Vitetta E, Fulton R, May R et al.: Redesigning major positions to create antitumor reagents. Science 238: 1098–1104, 1987

    Google Scholar 

  43. Fostad Ø, Pihl A: Synergistic effect of ricin in combination with daunorubicin, cis-dichlorodiammineplatinum (II) and vincristine in systemic L1210 Leukemia. Cancer Res 42: 2152–2158, 1982

    Google Scholar 

  44. Remsen LG, Trail PA, HellsotrÖm I, HellsotrÖm KE, Neuwelt EA: Enhanced delivery improves the efficacy of a tumor-specific doxorubicin immunoconjugate in a human brain tumor xenograft model. Neurosurgery 46: 704–709, 2000

    Google Scholar 

  45. Sjogren HO, Isaksson M, Willner D et al.: Antitumor activity of carcinoma-reactive BR96–doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res 57: 4530–4536, 1997

    Google Scholar 

  46. Trail PA, Willner D, Lasch SJ et al.: Cure of xenografted human carcinomas by BR96–doxorubicin immunoconjugates. Science 261: 212–215, 1993

    Google Scholar 

  47. Remsen LG, Marquez C, Garcia R et al.: Efficacy after sequencing of brain radiotherapy enhanced antibody targeted chemotherapy delivery in a rodent human lung cancer brain xenograft model. Int J Radiat Oncol Biol Phys 51: 1045–1049, 2001

    Google Scholar 

  48. Akabani G, Cokgor I, Coleman RE, Trotter DG et al.: Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with iodine-131-labeled anti-tenascin monoclonal antibody 81C6 therapy. Int J Radiat Oncol Biol Phys 46(4): 947–958, 2000

    Google Scholar 

  49. Riva P, Franceschi G, Arista A et al.: Local application of radiolabeled monoclonal antibodies in the treatment of high grade malignant gliomas: a six-year clinical experience.Cancer 80(Suppl. 12): 2733–2742, 1997

    Google Scholar 

  50. Kemshead JT, Hopkins K, Pizer B et al.: Dose escalation with repeated intratethecal injections of 131I-labelled MAbs for the treatment of central nervous system malignancies. Br J Cancer 77: 2324–2330, 1998

    Google Scholar 

  51. Pizer BL, Papanastassiou V, Hancock J et al.: A pilot study of monoclonal targeted radiotherapy in the treatment of central nervous system leukemia in children. Br J Haematol 77: 466–472, 1991

    Google Scholar 

  52. Westlin JE, Snook D, Nilsson S et al.: Intravenous and intratumoural therapy of patients with malignant gliomas with 90Yttrium labelled monoclonal antibody MUC 2–63. In: Epenetos A (ed) Monoclonal Antibodies: Applications in Clinical Oncology. Chapman and Hall Medica, London, UK, 1992, pp 17–25

    Google Scholar 

  53. Papanastassiou V, Pizer BL, Coakam HB et al.: Treatment of recurrent and cystic malignant glioma by a single intracavitary injection of I-131 monoclonal antibody: feasibility, pharmacokinetics, and dosimetry. Br J Cancer 67: 144–151, 1993

    Google Scholar 

  54. Youle RJ: Immunotoxins for central nervous system malignancy. Cancer Biol 7: 65–70, 1996

    Google Scholar 

  55. Siegall CB: Targeted toxins as anticancer agents. Cancer 74: 1006–1012, 1994

    Google Scholar 

  56. Faillot T, Magdelenat H, Mady E et al.: A phase I study of an anti-epidermal growth factor receptor monoclonal antibody for the treatment of malignant gliomas. Neurosurgery 39: 478–483, 1996

    Google Scholar 

  57. Manome Y, Watanabe M, Ohno T: The effect of immunotoxin against human glioma cells. Neurochir 32: 146–149, 1989

    Google Scholar 

  58. Zalutsky MR, Archer GE, Garg PK et al.: Chimeric antitenascin antibody 81C6: increased tumor localization compared with its murine parent. Nucl Med Biol 23: 449–458, 1996

    Google Scholar 

  59. Hall WA: Immunotoxin therapy. Neurosurg Clin N Amer 7: 537–546, 1996

    Google Scholar 

  60. Engebraaten O, Hjortland GO, Juell S et al.: Intratumoral immunotoxin treatment of human malignant brain tumors in immunodeficient animals. Int J Cancer 97: 846–852, 2002

    Google Scholar 

  61. Frainkel AE, Tagge EP, Willingham MC: Clinical trials of targeted toxins. Cancer Biol 6: 307–317, 1995

    Google Scholar 

  62. Martell LA, Agrawal A, Ross DA, Murasko KM: Efficacy of transferin receptor-targeted immunotoxins in brain tumor cell lines and pediatric brain tumors. Cancer Res 53: 1348–1353, 1993

    Google Scholar 

  63. Zovickian J, Johnson VG, Youle RJ: Potent and specific killing of human malignant brain tumor cells by an anti-transferin receptor antibody-ricin immunotoxin. J Neurosurg 66: 850–861, 1987

    Google Scholar 

  64. Mujoo K, Cheung L, Murray JL: Pharmacokinetics, tissue distribution, and in vivo antitumor effects of the antimelanoma immunotoxin ZME-gelonin. Cancer Immunol Immunother 40: 339–345, 1995

    Google Scholar 

  65. Baxter LT, Zhu H, Mackensen DG, Jain RK: Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54: 1517–1528, 1994

    Google Scholar 

  66. Yokota T, Milenic DE, Whitlow M, Schlom J: Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52: 3402–3408, 1992

    Google Scholar 

  67. Joshi BH, Leland P, Asher A et al.: In situ expression of interleukin-4 (IL-4) receptors in human brain tumors and cytotoxicity of a recombinant IL-4 cytotoxin in primary glioblastoma cell cultures. Cancer Res 61: 8058–8061, 2001

    Google Scholar 

  68. Rand RW, Kreitman RJ, Patronas N et al.: Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with highgrade glioma. Clin Cancer Res 6: 2157–2165, 2000

    Google Scholar 

  69. Yazdi PT, Murphy RM: Quantitative analysis of protein synthesis inhibition by transferrin–toxin conjugates. Cancer Res 54: 6387–6394, 1994

    Google Scholar 

  70. Laske DW, Youle RJ, Oldfield EH: Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 3: 1362–1368, 1997

    Google Scholar 

  71. Kawakami K, Kawakami M, Puri RK: Overexpressed cell surface interleukin-4 receptor molecules can be successfully targeted for antitumor cytotoxin therapy. Crit Rev Immunol 21: 299–310, 2001

    Google Scholar 

  72. Debinski W, Obiri NI, Powers SK et al.: Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and Pseudomonas exotoxin. Clin Cancer Res 1: 1253–1258, 1995

    Google Scholar 

  73. Puri RK, Hoon DS, Leland P et al.: Preclinical development of a recombinant toxin containing circularly permuted interleukin 4 and truncated Pseudomonas exotoxin for therapy of malignant astrocytomas. Cancer Res 56: 5631–5637, 1996

    Google Scholar 

  74. Pastan I, Fitzgerald D: Recombinant toxins for cancer treatment. Science 254: 1173–1177, 1992

    Google Scholar 

  75. Johnson VG, Wilson D, Greenfield L et al.: The role of the diphtheria toxin receptor in cytosol translocation. J Biol Chem 263: 1295–1300, 1988

    Google Scholar 

  76. Hall WA: Targeted toxin therapy. In: Kornblith PL, Walker MD (eds) Advances in Neuro-Oncology II. Futura Armonk, NY, 1997, pp 505–516

    Google Scholar 

  77. Fitzgerald DJ, Willingham MC, Cardarelli CO et al.: Amonoclonal antibody–Pseudomonas toxin conjugate that specifically kills multidrug-resistant cells. Proc Natl Acad Sci USA 84: 4288–4292, 1987

    Google Scholar 

  78. Hertler AA, Frankel AE: Immunotoxins: a clinical review of their use in the treatment of malignancies. J Clin Oncol 7: 1932–1942, 1989

    Google Scholar 

  79. McNally NJ: Enhancement of chemotherapy agents. Int J Radiat Oncol Biol Phys 8: 593–598, 1982

    Google Scholar 

  80. Jain RK, Baxter LT: Mechanism of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48: 7022–7032, 1988

    Google Scholar 

  81. Baxter LT, Jain RK: Transport of fluid and macromolecules in tumors I. Role of interstitial pressure and convection. Microvasc Res 37: 77–102, 1989

    Google Scholar 

  82. Jain RK: Transport of molecules in the tumor interstitium: a review. Cancer Res 47: 3039–3051, 1987

    Google Scholar 

  83. Wiig H, Tveit E, Hultborn R et al.: Interstitial fluid pressure in DMBA-induced rat mammary tumors. Scand J Clin Lab Invest 42: 159–164, 1982

    Google Scholar 

  84. Misiewicz M: Microvascular and interstitial pressures in normal and neoplastic tissues. M.S. Thesis Pittsburgh, Carnegie Mellon University, 1986

  85. Sylven B, Bois I: Protein content and enzymatic assays of interstitial fluid from some normal tissues and transplanted mouse tumors. Cancer Res 20: 831–835, 1960

    Google Scholar 

  86. Weistein JN, Eger RR, Covell DG et al.: The pharmacology of monoclonal antibodies. Ann NY Acad Sci 507: 199–210, 1987

    Google Scholar 

  87. Dedrick RL, Flessner MF: Pharmacokinetic considerations of monoclonal antibodies. Prog Clin Biol Res 288: 429–438, 1989

    Google Scholar 

  88. Capone PM, Papsidero LD, Chu TM:Relationship between antigen density and immunotherapeutic response elicited by monoclonal antibodies against solid tumors. J Natl Caner Inst 72: 673–677, 1984

    Google Scholar 

  89. Wen DY, Hall WA, Conrad J, Godal A, Florenes VA, Fodstad O: In vitro and in vivo variation in transferring receptor expression on a human medulloblastoma cell line. Neurosurgery 36: 1158–1163, 1995

    Google Scholar 

  90. Peter RU, Beetz A, Ried C et al.: Increased expression of the epidermal growth factor receptor in human epidermal keratinocytes after exposure to ionizing radiation. Radiat Res 136: 65–70, 1993

    Google Scholar 

  91. Schmidt-Ulrich RK, Valerie K, Chan W et al.: Expression of oestrogen receptor and transforming growth factor in MCF-7 cells after exposure to fractionated irradiation. Int J Radiat Biol 61: 405–415, 1992

    Google Scholar 

  92. Schmidt-Ulrich RK, Valerie K, Chan W et al.: Altered expression of epidermal growth factor receptor and estrogen receptor in MCF-7 cells after single and repeated radiation exposures. Int J Radiat Oncol Biol Phys 29: 813–819, 1994

    Google Scholar 

  93. Schmidt-Ulrich RK, Valerie K, Chan W et al.: Radiationinduced autophosphorylation of epidermal growth factor receptor in human malignant mammary and squamous epithelial cells. Radiat Res 145: 81–85, 1996

    Google Scholar 

  94. Vallera DA, Panoskaltsis-Mortari A, Yost C, Ramakrishnan S, Eide CR, Kreitman R, Nicholls PJ, Pennell C, Blazar BR: Anti-graft versus host disease effect of DT390-anti-CD3sFv, a single chain Fv fusion immunotoxin specifically targeting the CD3 epsilon moiety of the T cell receptor. Blood 88: 2342, 1996

    Google Scholar 

  95. Chan C-H, Blazar BR, Eide CR, Kreitman RJ, Vallera DA: A murine cytokine fusion toxin specifically targeting the murine GM-CSF receptor on normal committed bone marrow progenitor cells and GM-CSF dependent tumor cells. Blood 86: 2732, 1995

    Google Scholar 

  96. Chan CH, Blazar BR, Eide CR, Greenfield L, Kreitman RJ, Vallera DA: Reactivity of murine cytokine fusion toxin, DT390-mIL-3, with bone marrow progenitor cells 1,2. Blood 88: 1445, 1996

    Google Scholar 

  97. Colombatti M, Greenfield L, Youle RJ: Cloned fragment of diphtheria toxin linked toT-cell-specific antibody identifies regions of B chain active in cell entry. J Biol Chem 261: 3030–3035, 1986

    Google Scholar 

  98. Williams DP, Snider CE, Strom TB, Murphy JR: J Biol Chem 265: 11885–11889, 1990

    Google Scholar 

  99. Nichols P, Youle RJ: Structure of diphtheria toxin as a guide to rational design. In: Frankel AE (ed) Genetically Engineered Toxins. Marcel Dekker, NewYork, 1992, p 339

    Google Scholar 

  100. Collier JR: Structure–activity relationships in diphtheria toxin and Pseudomonas aeruginosa exotoxin A. In: Frankel AE (ed) Immunotoxins. Kluwer Academic Publishers, Norwell, MA, 1988, p 25

    Google Scholar 

  101. Vallera DA, Kuroki DW, Panoskaltsis-Mortari A, Buchbaum DJ, Blazar BR: Molecular modification of recombinant immunotoxin inducing terminal cysteine bridging reduces toxicity and enhances the anti-GVHD effect in a lethal murine model. Blood 96: 1157, 2000

    Google Scholar 

  102. Woolley DE: Collagenolytic mechanisms in tumor cell invasion. Cancer Metast Rev 3: 361–372, 1984

    Google Scholar 

  103. Reich R, Thompson EW, Iwamoto YY et al.: Effects of inhibitors of plasminogen activator, serine proteases, and collagenase IV on the invasion of basement membranes by metastatic cells. Cancer Res 48: 3307–3312, 1988

    Google Scholar 

  104. Ossowski L, Clunie G, Masucci MT et al.: In vivo paracrine interaction between urokinase and its receptor: effect on tumor cell invasion. J Cell Bio 115: 1107–1112, 1991

    Google Scholar 

  105. Abe T, Mori T, Kohno K et al.: Expression of 72-Dka type IV collagenase and invasion activity of human glioma cells. Clin Exp Metastasis 12: 296–304, 1994

    Google Scholar 

  106. Declerck YA, Perez N, Shimada HH et al.: Inhibition of invasion and metastatis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 52: 701–708, 1992

    Google Scholar 

  107. Christensen L, Simonsen ACW, Heegaard CW et al.: Immunohistochemical localization of urokinase-type plasminogen activator, type-1 plasminogen-activator inhibitor, urokinase receptor and ą-2-macroglobulin receptor in human breast carcinomas. Int J Cancer 66: 441–452, 1996

    Google Scholar 

  108. Fabrini MS, Carpani D, Bello-Rivero I et al.: The aminoterminal fragment of human urokinase directs a recombinant chimeric toxin to target cells: internalization is toxin mediated. FASEB J 11: 1169–1176, 1997

    Google Scholar 

  109. Grøndahl-Hansen J, Peters HA, van Putten WLJ et al.: Prognostic significance of the receptor for urokinase plasminogen activator in breast cancer. Clin Cancer Res 1: 1079–1087, 1995

    Google Scholar 

  110. Blasi F: uPA, uPAR, PAI-1:Key intersection of proteolytic, adhesive and chemotactic highways? Trends Immunol Today18: 415–417, 1997

    Google Scholar 

  111. Roldan AL, Cubellis MV, Masucci MT et al.: Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J 9: 467–474, 1990

    Google Scholar 

  112. Behrendt N, Rønne E, Ploug M et al.: The human receptor for urokinase plasminogen activator. J Biol Chem 265: 6453–6460, 1990

    Google Scholar 

  113. Høyer-Hansen G, Rønne E, Behrendt N et al.: Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem 267: 18224–18229, 1992

    Google Scholar 

  114. Waltz DA, Chapman HA: Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem 269: 14746–14750, 1994

    Google Scholar 

  115. Wei Y, Waltz DA, Rao N et al.: Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269: 32380–32388, 1994

    Google Scholar 

  116. Resnati M, Guttinger M, Valcamonica S et al.: Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO J 15: 1572–1582, 1996

    Google Scholar 

  117. De Vries TJ, Mooy CM, Van Balken MR et al.: Components of the plasminogen activation system in uveal melanoma – a clinico-pathological study. J Pathol 175: 59–67, 1995

    Google Scholar 

  118. Versgaet HW, Sier CF, Ganesh S et al.: Prognostic value of plasminogen activators and their inhibitors in colorectal cancer. Eur J Cancer 31A: 1105–1109, 1995

    Google Scholar 

  119. Crowley CW, Cohen RL, Lucas BK et al.: Prevention of metastasis by inhibition of the urokinase receptor. Proc Natl Acad Sci USA 90: 5021–5025, 1993

    Google Scholar 

  120. Mori T, Abe T, Wakabayashi Y et al.: Up-regulation of urokinase-type plasminogen activator and its receptor correlates with enhanced invasion activity of human glioma cells mediated by transforming growth factor-alpha or basic fibroblast growth factor. J Neuro-Oncol 46: 115–123, 2000

    Google Scholar 

  121. Vallera DA, Li C, Jin N et al.: Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst 94: 597–606, 2002

    Google Scholar 

  122. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6, 1990

    Google Scholar 

  123. Olson TA, Mohanraj D, Roy S, Ramakrishnan S: Targeting the tumor vasculature: inhibition of tumor growth by a vascular endothelial growth factor–toxin conjugate. Int J Cancer 73: 865–870, 1997

    Google Scholar 

  124. Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE: Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275: 547–550, 1997

    Google Scholar 

  125. Beitz JG, Davol-Lewis P, Clark JW, Kato J, Medina M, Frackelton AR, Lappi DA, Baird A, Calabresi P: Antitumor activity of basic FGF-saporin mitotoxin in vitro and in vivo. Cancer Res 52: 227–230, 1992

    Google Scholar 

  126. Burrows FJ, Thorpe PE: Eradication of large solid tumors in mice with an immunotoxin directed against the tumor vasculature. Proc Natl Acad Sci 90: 8996–9000, 1993

    Google Scholar 

  127. Gawlak SL, Pastan I, Siegall CB. Basic fibroblast growth factor. Pseudomonas exotoxin chimeric proteins: comparison with acidic fibroblast growth factor–Pseudomonas exotoxin. Bioconjug Chem 4: 483–489, 1993

    Google Scholar 

  128. Ramakrishnan S, Olson TA, Bauch VL, Mohanraj D. Vascular endothelial growth factor–toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res 56: 1324–1330, 1996

    Google Scholar 

  129. Solberg H, Ploug M, Høyer-Hansen G et al.: The murine receptor for urokinase-type plasminogen activator is primarily expressed in tissues actively undergoing remodeling. J Histochem Cytochem 49: 237–246, 2001

    Google Scholar 

  130. Fulcher S, Lui GM, Houston LL et al.: Use of immunotoxin to inhibit proliferating human corneal endothelium. Invest Opthalmol Vis Sci 29: 755–759, 1988

    Google Scholar 

  131. Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY: Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res 5: 985–990, 1999

    Google Scholar 

  132. Debinski W, Obiri NI, Powers SK et al.: Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed 75 of interleukin 13 and Pseudomonas exotoxin. Clin Cancer Res 1: 1253–1258, 1995

    Google Scholar 

  133. Zurawski G, de Vries JE: Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today 15: 1994

  134. Brown KD, Zurawski SM, Mosmann TR, Zurawski G: Afamily of small inducible proteins secreted by leukocytes are members of a new super-family that includes leukocyte and fibroblast-derived inflammatory agents, growth factors, and indicators of various activation processes. J Immunol 142: 679, 1989

    Google Scholar 

  135. Minty A, Chalon P, Derocq J-M, Dumont X, Guillemot J-C, Kaghad M, Labit C, Leplatois P, Liauzum P, Miloux B, Minty C, Casekkas P, Loison G, Lupker J, Shire D, Ferrara P, Caput D: Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 362: 248, 1993

    Google Scholar 

  136. Obiri NI, Leland P, Murata T, Debinski W, Puri RK: The IL-13 receptor structure differs on various cell types and may share more than one component with IL-4 receptor. J Immunol 158: 756–764, 1997

    Google Scholar 

  137. Debinski W: An immune regulatory cytokine receptor and glioblastoma multiforme an unexpected link. Crit Rev Oncog 9: 255–268, 1998

    Google Scholar 

  138. Li C, Hall WA, Jin N et al.: Targeting glioblastoma multiforme with an IL-13/diphtheria toxin fusion protein in vitro and in vivo in nude mice. Protein Eng 15: 419–427, 2002

    Google Scholar 

  139. Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK: Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 6: 2157–2165, 2000

    Google Scholar 

  140. Debinski W, Gibo DM, Hulet SW et al.: Receptor for interleukin 13 is a marker and therapeutic target for human high grade gliomas. Clin Cancer Res 5: 985–990, 1999

    Google Scholar 

  141. Hussain SR, Joshi BH, Puri RK et al.: Interleukin-13 receptor as a unique target for anti-glioblastoma therapy. Int J Cancer 92: 168–175, 2001

    Google Scholar 

  142. Debinski W: Local treatment of brain tumors with targeted chimera cytotoxic proteins. cancer Invest 20(5–6): 801–809, 2002 (Review)

    Google Scholar 

  143. Laske DW, Youle RJ, Oldfield EH: Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 3: 1362–1368, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rustamzadeh, E., Li, C., Doumbia, S. et al. Targeting the Over-Expressed Urokinase-Type Plasminogen Activator Receptor on Glioblastoma Multiforme. J Neurooncol 65, 63–75 (2003). https://doi.org/10.1023/A:1026238331739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026238331739

Navigation