Skip to main content
Log in

Microscopic Simulation of Limit Cycle Behavior in Spatially Extended Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The onset of homogeneous oscillations in spatially extended system is considered. The master equation formulation shows that, in a one-dimensional system, there exists a finite length beyond which the homogeneous oscillations are destroyed. Microscopic simulations are used to investigate the status of this prediction and quantitative agreement is obtained. The origin of the desynchronization mechanism is clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley-Interscience, 1977).

  2. F. Baras, G. Nicolis, M. Malek Mansour, and J. W. Turner, J. Stat. Phys. 32:1 (1983); G. Nicolis and F. Baras, J. Stat. Phys. 48:1071 (1987).

    Google Scholar 

  3. M. Frankowicz and G. Nicolis, J. Stat. Phys. 33:3 (1983); P. Peeters, F. Baras, and G. Nicolis, J. Chem. Phys. 93:7321 (1990).

    Google Scholar 

  4. A. Lemarchand, B. I. Ben Am, and G. Nicolis, Chem. Phys. Letters 162:92 (1989); I. Nagypl and I. R. Epstein, J. Phys. Chem. 90:6285 (1986); I. R. Epstein and I. Nagypl, in Spatial Inhomogeneities and Transient Behaviour in Chemical Kinetics, P. Gray, G. Nicolis, F. Baras, P. Borckmans, and S. K. Scott, eds. (Manchester Univ. Press, 1990).

    Google Scholar 

  5. G. Broggi and L. A. Lugiato, Phil. Trans. R. Soc. Lond. A 313:425 (1984).

    Google Scholar 

  6. W. Lange, F. Mitschke, R. Deserno, and J. Mlynek, Phys. Rev. A 32:1271 (1985).

    Google Scholar 

  7. H. Lemarchand and G. Nicolis, Physica A 82:251 (1976).

    Google Scholar 

  8. K. Tomita, T. Ohta, and H. Tomita, Prog. Theor. Phys. 52:1744 (1974); Y. Kuramoto and T. Tsuzuki, Progr. Theor. Phys. 52:1399 (1974); ibid. 54:60 (1975); J. W. Turner, in Proceedings of the International Conference on Synergetics, H. Haken, ed. (Springer, Berlin, 1980); H. Lemarchand, Physica A 101:518 (1980).

    Google Scholar 

  9. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).

    Google Scholar 

  10. R. Graham and T. Tél, Phys. Rev. A 42:4661 (1990); R. Graham, in Synergetics and Dynamical Instabilities, G. Gaglioti, H. Haken, and L. Lugiato, eds. (North-Holland, 1988).

    Google Scholar 

  11. A. Fraikin and H. Lemarchand, J. Stat. Phys. 41:531 (1985).

    Google Scholar 

  12. F. Baras, Phys. Rev. Lett. 77:1398 (1996).

    Google Scholar 

  13. D. T. Gillespie, J. Comput. Phys. 22:403 (1976); ibid., J. Chem. Phys. 81:2340 (1977).

    Google Scholar 

  14. J. Dethier, F. Baras, and M. Malek Mansour, Eur. Phys. Lett. 40:1 (1998).

    Google Scholar 

  15. R. Kapral, in Lectures Notes in Physics, L. Schimansky-Geier and T. Poeschel, eds. (Springer-Verlag, Berlin, 1997).

    Google Scholar 

  16. K. Kitahara, Ph.D. thesis (Université Libre de Bruxelles, 1974).

  17. H. Haken, Z. Physik B 20:413 (1975); C. W. Gardiner, K. J. Macneil, D. F. Walls, and I. S. Matheson, J. Stat. Phys. 14:307 (1976).

    Google Scholar 

  18. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1983).

    Google Scholar 

  19. M. Malek Mansour, C. Van Den Broeck, G. Nicolis, and J. W. Turner, Ann. Phys. (USA) 131:283 (1981).

    Google Scholar 

  20. S. Grossman, J. Chem. Phys. 65:2007 (1976); J. Keizer, J. Chem. Phys. 67:1473 (1977).

    Google Scholar 

  21. S. Karlin and H. Taylor, A First Course in Stochastic Processes (Academic Press, 1975); D. T. Gillespie, Markov Processes: An Introduction of Physical Scientists (Academic Press, 1992).

  22. J. S. Turner, J. Phys. Chem. 81:237 (1977); P. Hanusse and A. Blanché, J. Chem. Phys. 74:6148 (1981).

    Google Scholar 

  23. F. Baras, J. E. Pearson, and M. Malek Mansour, J. Chem. Phys. 93:5747 (1990); F. Baras, M. Malek Mansour, and J. E. Pearson, J. Chem. Phys. 105:8257 (1996).

    Google Scholar 

  24. F. Baras and M. Malek Mansour, Phys. Rev. E 54:6139 (1996).

    Google Scholar 

  25. G. A. Bird, Molecular Gas Dynamics (Clarendon, Oxford, 1976).

    Google Scholar 

  26. D. R. Chenoweth and S. Paolucci, Phys. Fluids 28:2365 (1985); G. A. Bird, Phys. of Fluids 30:364 (1987); E. P. Muntz, Ann. Rev. Mech. 21:387 (1989).

    Google Scholar 

  27. R. E. Meyer, Introduction to Mathematical Fluid Mechanics (Dover Publ., New York, 1971); G. A. Bird, Phys. Fluids 13:1172 (1970); E. Salomons and M. Mareschal, Phys. Rev. Lett. 69:269 (1992); M. Malek Mansour, M. Mareschal, G. Sonnino, and E. Kestemont, in Microscopic Simulations of Complex Hydrodynamic Phenomena, M. Mareschal and B. Holian, eds., Nato ASI Series, Vol. 292 (Plenum Press, 1992), p. 87.

    Google Scholar 

  28. A. L. Garcia, Numerical Methods for Physics (Prentice-Hall Inc., 1994).

  29. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).

    Google Scholar 

  30. P. Ortoleva and S. Yip, J. Chem. Phys. 65:2045 (1976).

    Google Scholar 

  31. J. Boissonade, Phys. Lett. A 74:285 (1979); J. Boissonade, in Nonlinear Phenomena in Chemical Dynamics, C. Vidal and A. Pacault, eds. (Springer-Verlag, Berlin, 1981); J. Boissonade, Physica A 113:607 (1982).

    Google Scholar 

  32. I. Prigogine and E. Xhrouet, Physica 15:913 (1949); I. Prigogine and M. Mahieu, Physica 16:51 (1950).

    Google Scholar 

  33. F. Baras and M. Malek Mansour, Phys. Rev. Lett. 63:2429 (1989); M. Malek Mansour and F. Baras, Physica A 188:253 (1992).

    Google Scholar 

  34. F. Baras and M. Malek Mansour, Adv. Chem Phys. 100:393 (1997).

    Google Scholar 

  35. G. Nicolis, J. Stat Phys. 6:195 (1972).

    Google Scholar 

  36. F. Baras and M. Malek Mansour, Phys. Rev. E 54:6139 (1996).

    Google Scholar 

  37. A microscopic simulation “mimicking” three-body collisions has been considered successfully by M. Mareschal and A. De Wit, J. Chem. Phys. 96:2000 (1992).

    Google Scholar 

  38. S. K. Scott, Chemical Chaos (Oxford Science Publ., 1993).

  39. V. Castel, E. Dulos, J. Boissonade, and P. De Kepper, Phys. Rev. Lett. 64:2953 (1990); Q. Ouyang and H. L. Swinney, Nature (London) 352:610 (1991).

    Google Scholar 

  40. R. Kapral and K. Showalter, eds., Chemical Waves and Patterns (Kluwer Academic Publishers, Amsterdam, 1994).

    Google Scholar 

  41. F. Baras, in Lectures Notes in Physics, L. Schimansky-Geier and T. Poeschel, eds. (Springer-Verlag, Berlin, 1997).

    Google Scholar 

  42. C. W. Gardiner, K. J. Mcneil, and D. F. Walls, Phys. Lett. A 53:205 (1975).

    Google Scholar 

  43. A. Lemarchand, H. Lemarchand, and E. Sulpice, J. Stat. Phys. 53:613 (1988).

    Google Scholar 

  44. D. Walgraef, G. Dewel, and P. Borckmans, J. Chem. Phys. 78:3043 (1983).

    Google Scholar 

  45. A. Weber, L. Kramer, I. S. Aranson, and L. Aranson, Physica D 61:279 (1992).

    Google Scholar 

  46. G. Nicolis, Introduction to Nonlinear Science (Cambridge University Press, 1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, M.M., Dethier, J. & Baras, F. Microscopic Simulation of Limit Cycle Behavior in Spatially Extended Systems. Journal of Statistical Physics 101, 425–441 (2000). https://doi.org/10.1023/A:1026451230269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026451230269

Navigation