Skip to main content
Log in

Inhibition of protein synthesis sensitizes thermotolerant cells to heat shock induced apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Hyperthermia is a potent inducer of apoptosis in many cell lines. A brief exposure to mildly elevated temperatures elicits a transient state of augmented resistance to subsequent thermal stress. Here we show that a hyperthermic treatment of 43°C for 1 h is sufficient to induce apoptosis in the cell line HL-60. This observation is based on morphologic evaluation and on comet assay results (an extremely sensitive method of detecting and quantifying apoptotic DNA fragmentation in individual cells). The thermotolerance phenomenon was also verified in the same manner by giving the cells a brief 30 min sub-lethal heat conditioning treatment at 43°C followed by a 6 h incubation time prior to the administration of a lethal heat load (43°C for 1 h). We observed a dramatic decrease in resultant apoptoses in the thermotolerized cells in comparison to unconditioned cells. We assessed the necessity of de novo protein synthesis in the protective phenomenon. When the conditioned cells were given a cycloheximide treatment prior to heat conditioning we saw a sensitization of the conditioned cells to secondary thermal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide ranging implications in tissues kinetics. Br J Cancer 1972; 26: 239–257.

    PubMed  CAS  Google Scholar 

  2. Wyllie AH. Death from the inside out: an overview. Phil Trans R Soc Lond 1994; 345: 237–241.

    CAS  Google Scholar 

  3. White E. Life, death, and the pursuit of apoptosis. Genes Dev 1993; 10: 3037–3039.

    Google Scholar 

  4. Brown DG, Sun XM, Cohen GM. Dexamethasone induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J Biol Chem 1993; 268: 3037–3039.

    PubMed  CAS  Google Scholar 

  5. Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 1992; 286: 331–334.

    PubMed  CAS  Google Scholar 

  6. Collins RJ, Harmon RV, Gobe GC, Kerr JF. Inter-nucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Rad Biol 1992; 61: 451–453.

    PubMed  CAS  Google Scholar 

  7. Lockshin RA, Alles A, Kodman N, Zakeri ZF. Programmed cell death and apoptosis: Early DNA degradation does not appear to be prominent in either embryonic cell death or metamorphosis of insects. FASEB 1991; 5: A518.

    Google Scholar 

  8. Duvall E, Wyllie AH, Morris RG. Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 1985; 56: 351–358.

    PubMed  CAS  Google Scholar 

  9. Samali A, Cotter TG. Heat shock proteins increase resistance to apoptosis. Exp Cell Res 1996; 223: 163–170.

    Article  PubMed  CAS  Google Scholar 

  10. Mosser D, Martin LH. Induced thermotolerance to apoptosis in a human T-lymphocyte cell line. J Cell Physiol 1992; 151: 561–570.

    Article  PubMed  CAS  Google Scholar 

  11. Harmon BV, Takano YS, Winterford CM, Gobe GC. The role of apoptosis in the response of cells and tumors to mild hyperthermia. Int J Rad Biol 1991; 59: 1075–1081.

    Google Scholar 

  12. Strasser A, Anderson RL. Bcl-2 and thermotolerance cooperate in cell survival. Cell Growth Diff 1995; 6: 799–805.

    PubMed  CAS  Google Scholar 

  13. Gething MJ, Samrook J. Protein folding in the cell. Nature 1993; 355: 33–45.

    Article  Google Scholar 

  14. Olive PL, Frazer G, Banath JP. Radiation induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay. Rad Res 1993; 136: 130–136.

    CAS  Google Scholar 

  15. Olive PL, Banath JP, Durand RE. Heterogeneity in radiation induced DNA damage and repair in tumor and normal cells using the comet assay. Rad Res 1990; 122: 86–94.

    CAS  Google Scholar 

  16. Olive PL, Wlodek D, Durand RE, Banath JP. Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Exp Cell Res 1992; 198: 259–267.

    Article  PubMed  CAS  Google Scholar 

  17. Fairbairn DW, O'Neill KL. Necrotic DNA degradation mimics apoptotic nucleosomal fragmentation comet tail length. In Vitro Cell Dev Biol 1995; 31: 171–173.

    CAS  Google Scholar 

  18. Fairbairn DW, O'Neill KL. Neutral comet assay is sufficient to identify an apoptotic window by visual inspection. Apoptosis 1996; 1: 91–94.

    Article  CAS  Google Scholar 

  19. Papadimitriou JM, Van Bruggen I. Quantitative investigation of apoptosis of murine mononuclear phagocytes during mild hyperthermia. Exp Molec Pathol 1993; 59: 1–12.

    Article  CAS  Google Scholar 

  20. Harmon BV, Corder AM, Collins RJ, et al. Cell death induced in a murine mastocytoma by 42–47°C heating in vitro: evidence that the form death changes from apoptosis to necrosis above a critical heat. Int J Rad Biol 1990; 58: 845–858.

    PubMed  CAS  Google Scholar 

  21. Lee YJ, Borrelli MJ, Corry PM. Mechanism(s) of heat killing: accumulation of nascent peptides in the nucleus? Biochem Biophys Res Com 1991; 176: 1525–1531.

    Article  PubMed  CAS  Google Scholar 

  22. Kapinga HH. Thermotolerance in human cells. J Cell Science 1993; 104: 11–17.

    Google Scholar 

  23. Ciechanover A, Finley D, Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 1984; 37: 57–66.

    Article  PubMed  CAS  Google Scholar 

  24. Gething M, Sambrook J. Protein folding in the cell. Nature 1992; 355: 33–45.

    Article  PubMed  CAS  Google Scholar 

  25. Finley D, Ciechanover A, Varshavsky A. Thermostability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 1984; 37: 43–55.

    Article  PubMed  CAS  Google Scholar 

  26. Carlson N, Roger S, Rechsteiner M. Micro injection of ubiquitin: changes in protein degradation in Hela cells subjected to heat-shock. J Cell Biol 1987; 104: 547–555.

    Article  PubMed  CAS  Google Scholar 

  27. Fried VA, Smith HT, Hildebrandt E, Weiner K. Ubiquitin has intrinsic proteolytic activity: implications for cellular regulation. Proc Natl Acad Sci USA 1987; 84: 3685–3689.

    Article  PubMed  CAS  Google Scholar 

  28. Zhu WG, Aramaki R, Cai Y, Antoku S. Promotion of heat-induced apoptosis in FM3A cells by protease inhibitors. Biochem Biophys Res Com 1996; 225: 924–931.

    Article  PubMed  CAS  Google Scholar 

  29. Gabai VL, Zamulaeva IV, Mosin AF, et al. Resistance of ehrlich tumor cells to apoptosis can be due to accumulation of heat shock proteins. FEBS Lett 1995; 375: 21–26.

    Article  PubMed  CAS  Google Scholar 

  30. Zhu W, Antoku S, Kura S, Aramaki R, Nakamura K, Sasaki H. Enhancement of hyperthermic killing in L5178Y cells by protease inhibitors. Cancer Res 1995; 55: 739–742.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poe, B.S., O'Neill, K.L. Inhibition of protein synthesis sensitizes thermotolerant cells to heat shock induced apoptosis. Apoptosis 2, 510–517 (1997). https://doi.org/10.1023/A:1026486531021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026486531021

Navigation