Skip to main content
Log in

Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to the Sphere

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the construction of generalized Banach frames on homogeneous spaces. The major tool is a unitary group representation which is square integrable modulo a certain subgroup. By means of this representation, generalized coorbit spaces can be defined. Moreover, we can construct a specific reproducing kernel which, after a judicious discretization, gives rise to atomic decompositions for these coorbit spaces. Furthermore, we show that under certain additional conditions our discretization method generates Banach frames. We also discuss nonlinear approximation schemes based on the atomic decomposition. As a classical example, we apply our construction to the problem of analyzing and approximating functions on the spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975).

    Google Scholar 

  2. S.T. Ali, J.-P. Antoine, J.-P. Gazeau and U.A. Mueller, Coherent states and their generalizations: A mathematical overview, Rev. Math. Phys. 39 (1998) 3987–4008.

    Google Scholar 

  3. J.-P. Antoine, L. Jaques and P. Vandergheynst, Wavelets on the sphere: Implementation and approximation, Preprint, Universitá Catholique de Louvain (2000).

  4. J.-P. Antoine and P. Vandergheynst, Wavelets on the n-sphere and other manifolds, J. Math. Phys. 7 (1995) 1013–1104.

    Google Scholar 

  5. J.-P. Antoine and P. Vandergheynst, Wavelets on the 2-sphere: A group theoretical approach, Appl. Comput. Harmon. Anal. 7 (1999) 1–30.

    Google Scholar 

  6. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations-Convergence rates, Math. Comp. 70 (2001) 27–75.

    Google Scholar 

  7. A. Cohen, I. Daubechies and J. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992) 485–560.

    Google Scholar 

  8. S. Dahlke and R. DeVore, Besov regularity for elliptic boundary value problems, Comm. Partial Differential Equations 22(1/2) (1997) 1–16.

    Google Scholar 

  9. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61 (SIAM, Philadelphia, PA, 1992).

    Google Scholar 

  10. R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998) 51–150.

    Google Scholar 

  11. R. DeVore, B. Jawerth and V. Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992) 737–785.

    Google Scholar 

  12. R. DeVore and V.N. Temlyakov, Some remarks on greedy algorithms, Adv. in Comput. Math. 5 (1996) 173–187.

    Google Scholar 

  13. H.G. Feichtinger, Minimal Banach spaces and atomic decompositions, Publ. Math. Debrecen 33 (1986) 167–168 and 34 (1987) 231-240.

    Google Scholar 

  14. H.G. Feichtinger, Atomic characterization of modulation spaces through Gabor-type representations, in: Proc. of Conf. “Constructive Function Theory”, Edmonton, 1986, Rocky Mount. J. Math. 19 (1989) 113–126.

  15. H.G. Feichtinger and K. GrÖchenig, A unified approach to atomic decompositions via integrable group representations, in: Proc. of Conf. “Function Spaces and Applications”, Lund, 1986, Lecture Notes in Mathematics, Vol. 1302 (Springer, New York, 1988) pp. 52–73.

    Google Scholar 

  16. H.G. Feichtinger and K. GrÖchenig, Banach spaces related to integrable group representations and their atomic decomposition I, J. Funct. Anal. 86 (1989) 307–340.

    Google Scholar 

  17. H.G. Feichtinger and K. GrÖchenig, Banach spaces related to integrable group representations and their atomic decomposition II, Monatsh. Math. 108 (1989) 129–148.

    Google Scholar 

  18. H.G. Feichtinger and K. GrÖchenig, Non-orthogonal wavelet and Gabor expansions and group representations, in: Wavelets and Their Applications, eds. M.B. Ruskai et al. (Jones and Bartlett, Boston, 1992) pp. 353–376.

    Google Scholar 

  19. G.B. Folland, Real Analysis (Wiley, New York, 1984).

    Google Scholar 

  20. D. Gabor, Theory of communication, J. Inst. Elect. Engrg. 93 (1946) 429–457.

    Google Scholar 

  21. R. Gilmore, Geometry of symmetrisized states, Ann. Phys. (NY) 74 (1972) 391–463.

    Google Scholar 

  22. R. Gilmore, On properties of coherent states, Rev. Mex. Fis. 23 (1974) 143–187.

    Google Scholar 

  23. K. GrÖchenig, Describing functions: Atomic decomposition versus frames, Monatsh. Math. 112 (1991) 1–42.

    Google Scholar 

  24. K. GrÖchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Basel, 2001).

    Google Scholar 

  25. K. GrÖchenig and S. Samarah, Nonlinear approximation with local Fourier bases, Constr. Approx. 16 (2000) 317–331.

    Google Scholar 

  26. A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984) 723–736.

    Google Scholar 

  27. A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representations, II. Examples, Ann. Inst. H. Poincará 45 (1986) 293–309.

    Google Scholar 

  28. E. Hernandez and G. Weiss, A First Course on Wavelets (CRC Press, Boca Raton, FL, 1996).

    Google Scholar 

  29. J.A. Hogan and J.D. Lakey, Extensions of the Heisenberg group by dilations and frames, Appl. Comput. Harmon. Anal. 2(2) (1995) 174–199.

    Google Scholar 

  30. A.K. Louis, P. Maass and A. Rieder, Wavelets. Theory and Applications (Wiley, Chichester, 1997).

    Google Scholar 

  31. S. Mallat, A Wavelet Tour of Signal Processing(Academic Press, San Diego, 1999).

    Google Scholar 

  32. Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, Vol. 37 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  33. A. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1978).

    Google Scholar 

  34. W. Schempp and B. Dreseler, EinfÜhrung in die harmonische Analyse (B.G. Teubner, Stuttgart, 1980).

    Google Scholar 

  35. B. Torresani, Position-frequency analysis for signals defined on spheres, Signal Process. 43(3) (1995) 341–346.

    Google Scholar 

  36. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland, Amsterdam, 1978).

    Google Scholar 

  37. P. Wojtasczyk, A Mathematical Introduction to Wavelets (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlke, S., Steidl, G. & Teschke, G. Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to the Sphere. Advances in Computational Mathematics 21, 147–180 (2004). https://doi.org/10.1023/B:ACOM.0000016435.42220.fa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACOM.0000016435.42220.fa

Navigation