Skip to main content
Log in

Molecular characterization of nosRZDFYLX genes coding for denitrifying nitrous oxide reductase of Bradyrhizobium japonicum

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The nosRZDFYLX gene cluster for the respiratory nitrous oxide reductase from Bradyrhizobium japonicum strain USDA110 has been cloned and sequenced. Seven protein coding regions corresponding to nosR, nosZ, the structural gene, nosD, nosF, nosY, nosL, and nosX were detected. The deduced amino acid sequence exhibited a high degree of similarity to other nitrous oxide reductases from various sources. The NosZ protein included a signal peptide for protein export. Mutant strains carrying either a nosZ or a nosR mutation accumulated nitrous oxide when cultured microaerobically in the presence of nitrate. Maximal expression of a PnosZ -lacZ fusion in strain USDA110 required simultaneously both low level oxygen conditions and the presence of nitrate. Microaerobic activation of the fusion required FixLJ and FixK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthamatten D. and Hennecke H. 1991. The regulatory status of the fixL-and fixJ-like genes in Bradyrhizobium japonicum may be different from that in Rhizobium meliloti. Mol. Gen. Genet. 225: 38-48.

    Google Scholar 

  • Arai H., Kodama T. and Higarashi Y. 1999. Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 170: 19-24.

    Google Scholar 

  • Berks B.C., Sargent F. and Palmer T. 2000. The Tat protein export pathway. Mol. Microbiol. 35: 260-74.

    Google Scholar 

  • Blight M.A. and Holland I.B. 1990. Structure and function of haemolysin B,P-glycoprotein and other members of a novel family of membrane translocators. Mol. Microbiol. 4: 873-880.

    Google Scholar 

  • Brown K., Tegoni M., Prudencio M., Pereira A.S., Besson S., Moura J.J., Moura I. and Cambillau C. 2000a. A novel type of catalytic copper cluster in nitrous oxide reductase. Nat. Struct. Biol. 7: 191-195.

    Google Scholar 

  • Brown K., Djinovic-Carugo K., Haltia T., Cabrito I., Saraste M., Moura J.J., Moura I., Tegoni M. and Cambillau C. 2000b. Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur. J. Biol. Chem. 275: 41133-41136.

    Google Scholar 

  • Chan Y.K., McCormick W.A. and Watson R.J. 1997. A new nos gene downstream from nosDFY is essential for dissimilatory reduction of nitrous oxide by Rhizobium (Sinorhizobium) meliloti. Microbiology 143: 2817-2824.

    Google Scholar 

  • Cuypers H., Viebrock-Sambale A. and Zumft W.G. 1992. NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifying Pseudomonas stutzeri. J. Bacteriol. 174: 5332-5339.

    Google Scholar 

  • Fischer H.M. 1994. Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Rev. 58: 352-386.

    Google Scholar 

  • Fischer H.M., Velasco L., Delgado M.J., Bedmar E.J., Schären S., Zingg D., Göttfert M. and Hennecke H. 2001. One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis. J. Bacteriol. 183: 1300-1311.

    Google Scholar 

  • Fischer H.M., Sciotti M.A. and Hennecke H. 2002. The network controlling sysmbiotic nitrogen fixation genes in Bradyrhizobium japonicum. In: Finan T.M., O'Brian M.R., Layzell D.B., Vesser J.K. and Newton W. (eds), Nitrogen fixation: Global Perspectives. Cabi Publishing, UK, pp. 213-217.

    Google Scholar 

  • Hoeren F.U., Berks B.C., Ferguson S.J. and McCarthy J.E. 1993. Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. Eur. J. Biochem. 218: 49-57.

    Google Scholar 

  • Holloway P., McCormick W., Watson R.J. and Chan Y.K. 1996. Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti. J. Bacteriol. 178: 1505-1514.

    Google Scholar 

  • Holm L., Saraste M. and Wikström M. 1987. Structural models of the redox centres in cytochrome oxidase. EMBO J. 6: 2819-2823.

    Google Scholar 

  • Honisch U. and Zumft W.G. 2003. Operon structure and regulation of the nos gene region of Pseudomonas stutzeri, encoding an ABC-Type ATPase for maturation of nitrous oxide reductase. J. Bacteriol. 185: 1895-1902.

    Google Scholar 

  • Kwiatkowski A. and Shapleigh J.P. 1996. Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J. Biol. Chem. 271: 24382-24388.

    Google Scholar 

  • Matsubara T. and Zumft W.G. 1982. Identification of a copper protein as part of nitrous oxide-reducing system in nitrite respiring (denitrifying) pseudomonads. Arch. Microbiol. 132: 322-328.

    Google Scholar 

  • McGuirl M.A., Nelson L.K., Bollinger J.A., Chan Y.K. and Dooley D.M. 1998. The nos (nitrous oxide reductase) gene cluster from the soil bacterium Achromobacter cycloclastes: cloning, sequence analysis, and expression. J. Inorg. Biochem. 70: 155-69.

    Google Scholar 

  • McGuirl M.A., Bollinger J.A., Cosper N., Scott R.A. and Dooley D.M. 2001. Expression, purification, and characterization of NosL, a novel Cu(I) protein of the nitrous oxide reductase (nos) gene cluster. J. Biol. Inorg. Chem. 6: 189-195.

    Google Scholar 

  • Mesa S., Velasco L., Manzanera M.E., Delgado M.J. and Bedmar E.J. 2002. Characterization of the norCBQD genes, encoding nitric oxide reductase, in the nitrogen fixing bacterium Bradyrhizobium japonicum. Microbiology 148: 3553-3560.

    Google Scholar 

  • Miller J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Habor, New York, USA.

    Google Scholar 

  • Nellen-Anthamatten D., Rossi P., Kullik P.I., Babst M., Fisher H.M. and Hennecke H. 1998. Bradyrhizobium japonicum FixK2, a crucial distributor in the FixLJ-dependent regulatory cascade for control of genes inducible by low oxygen. J. Bacteriol. 180: 5251-5255.

    Google Scholar 

  • Okata E. and Ooi T. 1987. Examination of protein sequence homologies IV. Twenty-seven bacterial ferredoxins. J. Mol. Evol. 26: 45-54.

    Google Scholar 

  • Philippot L., Mirleau P., Mazurier S., Siblot A., Hartmann A., Lemanceau P. and Germon J.C. 2001. Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor, and nos genes. Biochim. Biophys. Acta 1517: 436-440.

    Google Scholar 

  • Prentki P. and Krisch H.M. 1984. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29: 303-13.

    Google Scholar 

  • Pugsley A.P. 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57: 50-108.

    Google Scholar 

  • Rasmussen T., Berks B.C., Sanders-Loehr J., Dooley D.M., Zumft W.G. and Thomson A.J. 2000. The catalytic center in nitrous oxide reductase, CuZ, is a copper-sulfide cluster. Biochemistry 39: 12753-12756.

    Google Scholar 

  • Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Saraste M., Sibbald P.R. and Wittinghoffe A. 1990. The P-loop, a common motif in ATP-and GTP-binding proteins. Trends Biochem. Sci. 15: 430-434.

    Google Scholar 

  • Saunders N.F., Hornberg J.J., Reijnders W.N., Westerhoff H.V., de Vries S. and van Spanning R.J. 2000. The NosX and NirX proteins of Paracoccus denitrificans are functional homologues: their role in maturation of nitrous oxide reductase. J. Bacteriol. 182: 5211-5217.

    Google Scholar 

  • Simon R., Priefer U. and Pühler A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1: 784-791.

    Google Scholar 

  • Spaink H.P., Okker H.R.J., Wijffelman C.A., Pees E. and Lugtenberg B.J.J. 1987. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol. Biol. 9: 27-39.

    Google Scholar 

  • Spiro S. 1994. The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek 66: 23-36.

    Google Scholar 

  • Tosques I.E., Shi J. and Shapleigh J.P. 1996. Cloning and characterization of nnr, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J. Bacteriol. 178: 4958-4964.

    Google Scholar 

  • Vairinhos F., Wallace W. and Nicholas D.J.D. 1989. Simultaneous assimilation and denitrification of nitrate by Bradyrhizobium japonicum. J. Gen. Microbiol. 135: 189-193.

    Google Scholar 

  • van Spanning R.J.M., de Boer A.P., Reijnders W.N., Spiro S., Westerhoff H.V., Stouthamer A.H. and van der Oost J. 1995. Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS Lett. 360: 151-154.

    Google Scholar 

  • Velasco L., Mesa S., Delgado M.J. and Bedmar E.J. 2001. Characterization of the nirK gene encoding the respiratory, Cu-containing nitrite reductase of Bradyrhizobium japonicum. Biochim. Biophys. Acta 1521: 130-134.

    Google Scholar 

  • Viebrock A. and Zumft W.G. 1988. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J. Bacteriol. 170: 4658-4668.

    Google Scholar 

  • Vincent J.M. 1974. Root-nodule symbioses with Rhizobium. In: Quispel A. (ed.), The Biology of nitrogen fixation. American Elsevier Publishing Company Inc., New York, NY, USA. pp. 265-341.

    Google Scholar 

  • Vollack K.U. and Zumft W.G. 2001. Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J. Bacteriol. 183: 2516-2526.

    Google Scholar 

  • Zumft W.G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 4: 533-616.

    Google Scholar 

  • Zumft W.G., Viebrock-Sambale A. and Braun C. 1990. Nitrous oxide reductase from denitrifying Pseudomonas stutzeri. Genes for copper-processing and properties of the deduced products, including a new member of the family of ATP/GTP-binding proteins. Eur. J. Biochem. 192: 591-599.

    Google Scholar 

  • Zumft W.G., Dreusch A., Lochelt S., Cuypers H., Friedrich B. and Schneider B. 1992. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur. J. Biochem. 208: 31-40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, L., Mesa, S., Xu, Ca. et al. Molecular characterization of nosRZDFYLX genes coding for denitrifying nitrous oxide reductase of Bradyrhizobium japonicum . Antonie Van Leeuwenhoek 85, 229–235 (2004). https://doi.org/10.1023/B:ANTO.0000020156.42470.db

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ANTO.0000020156.42470.db

Navigation