Skip to main content
Log in

Myocardial Remodeling in Viral Heart Disease: Possible Interactions Between Inflammatory Mediators and MMP-TIMP System

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMP), a family of proteases, are involved in the degradation of extracellular matrix proteins and hence in the determination of interstitial architecture. In the heart, MMPs have been found to play a significant role in the development of myocardial remodeling and congestive heart failure. Tissue inhibitors of matrix metalloproteinases (TIMPs) represent a family of proteins which are known to regulate the expression and activity of MMPs. TIMPs are endogenous physiological inhibitors of MMPs and their concomitant downregulation in heart failure suggests the existence of a critical balance between MMPs and TIMPs in the normal maintenance of myocardial interstitial homeostasis. In addition, cytokines regulate expression of both MMPs and TIMPs besides eliciting a direct effect on myocardial cell function. Therefore, myocardial inflammation may also contribute to the development of cardiac remodeling along with other stimuli like mechanical stress and humoral factors. Viral myocarditis, a predisposing factor for dilated cardiomyopathy, is a condition in which extent of intramyocardial inflammation is thought to determine the progression of disease. Inflammatory events in the heart following viral infection are speculated to be responsible for the transition of myocarditis to dilated cardiomyopathy. In viral myocarditis and other inflammatory heart diseases, the inflammatory cells and their battery of cytokines may also alter the myocardial MMP-TIMP system and eventually lead to dilation of the heart and ventricular dysfunction. The objective of this review is to present an overall picture of the inflammatory phase in viral myocarditis and discuss the possible interactions between inflammation and myocardial MMP profiles which may lead to the evolution of dilated cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lower R. Tractatus de Corde: De Motu & Colore Sagnuinus et Chyli in Eum Tranfitu, 1st ed. London, UK: Jacobi Alleftry, 1669.

    Google Scholar 

  2. Bozkurt B, Kribbs S, Clubb FJ Jr, et al. Pathophysiologically relevant concentrations of tumor necrosis factor-β promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998;97:1382–1391.

    PubMed  Google Scholar 

  3. Thaik CM, Calderone A, Takahashi N, Colucci WS. Interleukin-1β modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 1995;96:1093–1099.

    PubMed  Google Scholar 

  4. Kubota T, McTiernan CF, Frye CS, et al. Dilated cardiomyopathy in transgenic mice with cardiac specific overexpression of tumor necrosis factor-β. Circ Res 1997;81:627–635.

    PubMed  Google Scholar 

  5. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 1996;93:841–842.

    PubMed  Google Scholar 

  6. Diwan A, Tran T, Misra A, Mann DL. Inflammatory mediators and the failing heart: A translational approach. Curr Mol Med 2003;3:161–182.

    PubMed  Google Scholar 

  7. Filippatos G, Parissis JT, Adamopoulos S, Kardaras F. Chemokines in cardiovascular remodeling: Clinical and therapeutic implications. Curr Mol Med 2003;3:139–147.

    PubMed  Google Scholar 

  8. Kan H, Finkel MS. Inflammatory mediators and reversible myocardial dysfunction. J Cell Physiol 2003;195:1–11.

    PubMed  Google Scholar 

  9. Mann DL. Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circ Res 2002;91:988–998.

    PubMed  Google Scholar 

  10. Vasan RS, Sullivan LM, Roubenoff R, et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: The Framingham Heart Study. Circulation 2003;107:1486–1491.

    PubMed  Google Scholar 

  11. Weber KT, Sun Y, Tyagi SC, Cleutjens JP. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 1994;26:279–292.

    PubMed  Google Scholar 

  12. Weber KT, Sun Y, Katwa LC, Cleutjens JP. Connective tissue: A metabolic entity? J Mol Cell Cardiol 1995;27:107–120.

    PubMed  Google Scholar 

  13. Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: Involvement in cardiac hypertrophy. Circ Res 2002;91:1103–1113.

    PubMed  Google Scholar 

  14. Kapadia S, Lee JR, Torre-Amione G, Birdsall HH, Ma TS, Mann DL. Tumor necrosis factor gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 1995;96:1042–1052.

    PubMed  Google Scholar 

  15. Borden P, Heller RA. Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Crit Rev Eukaryot Gene Expr 1997;7:159–178.

    PubMed  Google Scholar 

  16. Ries C, Petrides PE. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler 1995;376:345–355.

    PubMed  Google Scholar 

  17. Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000;106:55–62.

    PubMed  Google Scholar 

  18. Kim HE, Dalal SS, Young E, et al. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 2000;106:857–866.

    PubMed  Google Scholar 

  19. Li YY, Feldman AM, Sun Y, et al. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 1998;98:1728–1734.

    PubMed  Google Scholar 

  20. Thomas CV, Coker ML, Zellner JL, et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 1998;97:1708–1715.

    PubMed  Google Scholar 

  21. Woessner JF Jr, Nagase H. Introduction to the matrix metalloproteinases (MMPs). In: Matrix Metalloproteinases and TIMPs. New York: Oxford University Press, 2000:1–10.

    Google Scholar 

  22. Woessner JF Jr. The matrix metalloproteinase family. In: Parks WC, Mecham RP, eds. Matrix Metalloproteinases. San Diego: Academic Press, 1998:1–14.

    Google Scholar 

  23. Woessner JF Jr, Nagase H. Activation of the zymogen forms of MMPs. In: Matrix Metalloproteinases and TIMPs. New York: Oxford University Press, 2000:72–86.

    Google Scholar 

  24. Miyamori H, Takino T, Seiki M, Sato H. Human membrane type-2 matrix metalloproteinase is defective in cellassociated activation of progelatinase A. Biochem Biophys Res Commun 2000;267:796–800.

    PubMed  Google Scholar 

  25. Goldberg GI, Marmer BL, Grant GA, et al. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci USA 1989;86:8207–8211.

    PubMed  Google Scholar 

  26. Kajita M, Kinoh H, Ito N, et al. Human membrane type-4 matrix metalloproteinase (MT4-MMP) is encoded by a novel major transcript: Isolation of complementary DNA clones for human and mouse mt4-mmp transcripts. FEBS Lett 1999;457:353–356.

    PubMed  Google Scholar 

  27. Llano E, Pendas AM, Freije JP, et al. Identification and characterization of human MT5-MMP, a new membranebound activator of progelatinase A overexpressed in brain tumors. Cancer Res 1999;59:2570–2576.

    PubMed  Google Scholar 

  28. Shimada T, Nakamura H, Ohuchi E, et al. Characterization of a truncated recombinant form of human membrane type 3 matrix metalloproteinase. Eur J Biochem 1999;262:907–914.

    PubMed  Google Scholar 

  29. Velasco G, Cal S, Merlos-Suarez A, et al. Human MT 6-matrix metalloproteinase: Identification, progelatinase A activation, and expression in brain tumors. Cancer Res 2000;60:877–882.

    PubMed  Google Scholar 

  30. He CS, Wilhelm SM, Pentland AP, et al. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci USA 1989;86:2632–2636.

    PubMed  Google Scholar 

  31. Murphy G, Allan JA, Willenbrock F, et al. The role of the Cterminal domain in collagenase and stromelysin speci-ficity. J Biol Chem 1992;267:9612–9618.

    PubMed  Google Scholar 

  32. Murphy G, Knauper V. Relating matrix metalloproteinase structure to function: Why the 'hemopexin' domain? Matrix Biol 1997;15:511–518.

    PubMed  Google Scholar 

  33. Okada Y, Gonoji Y, Naka K, et al. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem 1992;267:21712–21719.

    PubMed  Google Scholar 

  34. Baker AH, Zaltsman AB, George SJ, Newby AC. Divergent effects of tissue inhibitor of metalloproteinase-1,-2, or-3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro: TIMP-3 promotes apoptosis. J Clin Invest 1998;101:1478–1487.

    PubMed  Google Scholar 

  35. Edwards DR, Beaudry PP, Laing TD, et al. The roles of tissue inhibitors of metalloproteinases in tissue remodelling and cell growth. Int J Obes Relat Metab Disord 1996;20(Suppl 3):S9–S15.

    Google Scholar 

  36. Greene J, Wang M, Liu YE, et al. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem 1996;271:30375–30380.

    PubMed  Google Scholar 

  37. Li YY, McTiernan CF, Feldman AM. Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res 1999;42:162–172.

    PubMed  Google Scholar 

  38. Spinale FG. Matrix metalloproteinases: Regulation and dysregulation in the failing heart. Circ Res 2002;90:520–530.

    PubMed  Google Scholar 

  39. Woessner JF Jr, Nagase H. Functions of the TIMPs. In: Matrix Metalloproteinases and TIMPs. New York: Oxford University Press, 2000:130–135.

    Google Scholar 

  40. Gomis-Ruth FX, Maskos K, Betz M, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 1997;389:77–81.

    PubMed  Google Scholar 

  41. Spinale FG, Coker ML, Heung LJ, et al. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 2000;102:1944–1949.

    PubMed  Google Scholar 

  42. Li YY, Feldman AM, Sun Y, et al. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 1998;98:1728–1734.

    PubMed  Google Scholar 

  43. Chancey AL, Brower GL, Peterson JT, Janicki JS. Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 2002;105:1983–1988.

    PubMed  Google Scholar 

  44. Spinale FG, Coker ML, Krombach SR, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure: Effects on left ventricular dimensions and function. Circ Res 1999;85:364–376.

    PubMed  Google Scholar 

  45. Li YY, Kadokami T, Wang P, McTiernan CF, Feldman AM. MMP inhibition modulates TNF-alpha transgenic mouse phenotype early in the development of heart failure. Am J Physiol Heart Circ Physiol 2002;282:H983–H989.

    PubMed  Google Scholar 

  46. Kadokami T, Frye C, Lemster B, Wagner CL, Feldman AM, McTiernan CF. Anti tumor necrosis factor-alpha antibody limits heart failure in a transgenic model. Circulation 2001;104:1094–1097.

    PubMed  Google Scholar 

  47. Gunja-Smith Z, Morales AR, Romanelli R, et al. Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 1996;148:1639–1648.

    PubMed  Google Scholar 

  48. Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 2000;46:214–224.

    PubMed  Google Scholar 

  49. LiYY, FengY, McTiernanCF, et al. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 2001;104:1147–1152.

    PubMed  Google Scholar 

  50. Dostal DE, Baker KM. The cardiac renin-angiotensin system: Conceptual, or a regulator of cardiac function? Circ Res 1999;85:643–650.

    PubMed  Google Scholar 

  51. Schiffrin, Ernesto L, Touyz, Rhian M. Inflammation and vascular hypertrophy induced by angiotensin II: Role of NADPHoxidase-derived reactive oxygen species independently of blood pressure elevation? Arterioscler Thromb Vasc Biol 2003;23:707–709.

    PubMed  Google Scholar 

  52. Peng J, Gurantz D, Tran V, Cowling RT, Greenberg BH. Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ Res 2002;91:1119–1126.

    PubMed  Google Scholar 

  53. Coker ML, Jolly JR, Joffs C, Etoh T, Holder JR, Bond BR, Spinale FG. Matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation. Am J Physiol Heart Circ Physiol 2001;281: H543–551.

    PubMed  Google Scholar 

  54. Reinhardt D, Sigusch HH, Hensse J, Tyagi SC, Korfer R, Figulla HR. Cardiac remodelling in end stage heart failure: Upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart 2002;88:525–530.

    PubMed  Google Scholar 

  55. Brenner DA, O'Hara M, Angel P, Chojkier M, Karin M. Prolonged activation of un and collagenase genes by tumour necrosis factor-alpha. Nature 1989;337:661–663.

    PubMed  Google Scholar 

  56. Conca W, Kaplan PB, Krane SM. Increases in levels of procollagenase mRNA in human fibroblasts induced by interleukin-1, tumor necrosis factor-alpha, or serum follow c-jun expression and are dependent on new protein synthesis. Trans Assoc Am Physicians 1989;102:195–203.

    PubMed  Google Scholar 

  57. Delany AM, Brinckerhoff CE. Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts. J Cell Biochem 1992;50:400–410.

    PubMed  Google Scholar 

  58. Li YY, McTiernan CF, Feldman AM. Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res 1999;42:162–172.

    PubMed  Google Scholar 

  59. Duivenvoorden WC, Hirte HW, Singh G. Transforming growth factor beta 1 acts as an inducer of matrix metalloproteinase expression and activity in human bone-metastasizing cancer cells. Clin Exp Metastasis 1999;17:27–34.

    PubMed  Google Scholar 

  60. Wahl SM, Allen JB, Weeks BS, Wong HL, Klotman PE. Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sci USA 1993;90:4577–4581.

    PubMed  Google Scholar 

  61. Edwards DR, Leco KJ, Beaudry PP, et al. Differential effects of transforming growth factor-beta 1 on the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in young and old human fibroblasts. Exp Gerontol 1996;31:207–223.

    PubMed  Google Scholar 

  62. Weber KT. Extracellular matrix remodeling in heart failure-A role for de novo angiotensin II generation. Circulation 1997;96:4065–4082.

    PubMed  Google Scholar 

  63. Eghbali M, Tomek R, Sukhatme VP, Woods C, Bhambi B. Differential effects of transforming growth factor-beta 1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circ Res 1991;69:483–490.

    PubMed  Google Scholar 

  64. Sun Y, Zhang JQ, Zhang J, Ramires FJ. Angiotensin II, transforming growth factor-beta 1 and repair in the infarcted heart. J Mol Cell Cardiol 1998;30:1559–1569.

    PubMed  Google Scholar 

  65. Tomita H, Egashira K, Ohara Y, et al. Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by longterm blockade of nitric oxide synthesis in rats. Hypertension 1998;32:273–279.

    PubMed  Google Scholar 

  66. Villarreal FJ, Lee AA, Dillmann WH, Giordano FJ. Adenovirus-mediated overexpression of human transforming growth factor-beta 1 in rat cardiac fibroblasts, myocytes and smooth muscle cells. J Mol Cell Cardiol 1996;28:735–742.

    PubMed  Google Scholar 

  67. Diaz A, Munoz E, Johnston R, Korn JH, Jimenez SA. Regulation of human lung fibroblast alpha 1(I) procollagen gene expression by tumor necrosis factor alpha, interleukin-1 beta, and prostaglandin E2. J Biol Chem 1993;268:10364–10371.

    PubMed  Google Scholar 

  68. Kleiner DE Jr, Tuuttila A, Tryggvason K, Stetler-Stevenson WG. Stability analysis of latent and active 72-kDa type IV collagenase: The role of tissue inhibitor of metalloproteinases-2 (TIMP-2). Biochemistry 1993;32:1583–1592.

    PubMed  Google Scholar 

  69. Yu AE, Murphy AN, Stetler-Stevenson WG. 72-kDa Gelatinase (gelatinase A): Structure, activation, regulation, and substrate specificity. In: Parks WC, Mecham RP, eds. Matrix Metalloproteinases. San Diego: Academic Press, 1998:357.

    Google Scholar 

  70. Mertens PR, Alfonso-Jaume MA, Steinmann K, Lovett DH. A synergistic interaction of transcription factors AP-2 and YB-1 regulates gelatinase A enhancer-dependent transcription. J Biol Chem 1998;273:32957–32965.

    PubMed  Google Scholar 

  71. Biswas C, Zhang Y, DeCastro R, et al. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 1995;55:434–439.

    PubMed  Google Scholar 

  72. Guo H, Zucker S, Gordon MK, Toole BP, Biswas C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem 1997;272:24–27.

    PubMed  Google Scholar 

  73. Lim M, Martinez T, JablonsD, et al. Tumor-derivedEMMPRIN (extracellular matrix metalloproteinase inducer) stimulates collagenase transcription through MAPK p38. FEBS Lett 1998;441:88–92.

    PubMed  Google Scholar 

  74. Thomas CV, Coker ML, Zellner JL, et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 1998;97:1708–1715.

    PubMed  Google Scholar 

  75. Li YY, Feldman AM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 1998;98:1728–1734.

    PubMed  Google Scholar 

  76. Li YY, McTiernan CF, Moravec CS, Kormos RL, Feldman AM. The activated matrix metalloproteinase-9 in the failing human heart is suppressed by LVAD support. Circulation 1999;100(Suppl I):I560.

    Google Scholar 

  77. Vu TH, Werb Z. Gelatinase B: Structure, regulation, and function. In: Parks WC, Mecham RP, eds. Matrix Metalloproteinases. San Diego: Academic Press, 1998;115–148.

    Google Scholar 

  78. Corcoran ML, Kibbey MC, Kleinman HK, Wahl LM. Laminin SIKVAV peptide induction of monocyte/ macrophage prostaglandin E2 and matrix metalloproteinases. J Biol Chem 1995;270:10365–10368.

    PubMed  Google Scholar 

  79. Huhtala P, Humphries MJ, McCarthy JB, et al. Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 1995;129:867–879.

    PubMed  Google Scholar 

  80. Tremble P, Chiquet-Ehrismann R, Werb Z. The extracellular matrix ligands fibronectin and tenascin collaborate in regulating collagenase gene expression in fibroblasts. Mol Biol Cell 1994;5:439–453.

    PubMed  Google Scholar 

  81. Maquart FX, Pickart L, Laurent M, et al. Stimulation of collagen synthesis in fibroblast cultures by the tripeptidecopper complex glycyl-L-histidyl-L-lysine-Cu2+. FEBS Lett 1988;238:343–346.

    PubMed  Google Scholar 

  82. Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 1997;11:51–59.

    PubMed  Google Scholar 

  83. Janicki JS. Collagen degradation in the heart. In: Eghbali-Webb M, ed. Molecular Biology of Collagen Matrix Turnover in the Heart. Austin, TX: Landes, 1995;61–76.

    Google Scholar 

  84. Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 1995;27:1281–1292.

    PubMed  Google Scholar 

  85. Murphy E, Shibuya K, Hosken N, et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J Exp Med 1996;183:901–913.

    PubMed  Google Scholar 

  86. Yoshimoto K, Swain SL, Bradley LM. Enhanced development of Th2-like primary CD4 effectors in response to sustained exposure to limited rIL-4 in vivo. J Immunol 1996;156:3267–3274.

    PubMed  Google Scholar 

  87. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986;136:2348–2357.

    PubMed  Google Scholar 

  88. Tanaka T, Hu-Li J, Seder RA, et al. Interleukin 4 suppresses interleukin 2 and interferon gamma production by naive T cells stimulated by accessory celldependent receptor engagement. Proc Natl Acad Sci USA 1993;90:5914–5918.

    PubMed  Google Scholar 

  89. Inobe J, Slavin AJ, Komagata Y, et al. IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur J Immunol 1998;28:2780–2790.

    PubMed  Google Scholar 

  90. Chizzolini C, Rezzonico R, De Luca C, et al. Th2 cell membrane factors in association with IL-4 enhance matrix metalloproteinase-1 (MMP-1) while decreasing MMP-9 production by granulocyte-macrophage colonystimulating factor-differentiated human monocytes. J Immunol 2000;164:5952–5960.

    PubMed  Google Scholar 

  91. Corcoran ML, Stetler-Stevenson WG, Brown PD, et al. Interleukin 4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/ gelatinase production by human monocytes. J Biol Chem 1992;267:515–519.

    PubMed  Google Scholar 

  92. Zhang Y, McCluskey K, Fujii K, et al. Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte-macrophage CSF, and IL-1 beta through prostaglandin-dependent and-independent mechanisms. J Immunol 1998;161:3071–3076.

    PubMed  Google Scholar 

  93. Ihn H, Yamane K, Asano Y, et al. IL-4 up-regulates the expression of tissue inhibitor of metalloproteinase-2 in dermal fibroblasts via the p38 mitogen-activated protein kinase dependent pathway. J Immunol 2002;168:1895–1902.

    PubMed  Google Scholar 

  94. Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 2000;86:1259–1265.

    PubMed  Google Scholar 

  95. Vella AT, Dow S, Potter TA, et al. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc Natl Acad Sci USA 1998;95:3810–3815.

    PubMed  Google Scholar 

  96. Jain J, Loh C, Rao A. Transcriptional regulation of the IL-2 gene. Curr Opin Immunol 1995;7:333–342.

    PubMed  Google Scholar 

  97. Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: A current overview. Cell 1993;73:5–8.

    PubMed  Google Scholar 

  98. Zhang J, Yu ZX, Hilbert SL, et al. Cardiotoxicity of human recombinant interleukin-2 in rats. Amorphological study. Circulation 1993;87:1340–1353.

    PubMed  Google Scholar 

  99. Braimbridge MV, Darracott S, Chayen J, Bitensky L, Poulter LW. Possibility of a new infective aetiological agent in congestive cardiomyopathy. Lancet 1967;28:171–176.

    Google Scholar 

  100. Jin O, Sole MJ, Butany JW, et al. The detection of enterovirus RNA in myocardial biopsies from patients with myocarditis and cardiomyopathy using gene amplification by the polymerase chain reaction. Circulation 1990;82:8–16.

    PubMed  Google Scholar 

  101. Wee L, Liu P, Penn L, et al. Persistence of viral genome into late stages of murine myocarditis detected by polymerase chain reaction. Circulation 1992;86:1605–1614.

    PubMed  Google Scholar 

  102. Tracy S, Wiegand V, McManus B, et al. Molecular approaches to enteroviral diagnosis in idiopathic cardiomyopathy and myocarditis. J Am Coll Cardiol 1990;15:1688–1694.

    PubMed  Google Scholar 

  103. Martin AB, Webber S, Fricker FJ, et al. Acute myocarditis: Rapid diagnosis by PCR in children. Circulation 1994;90:330–339.

    PubMed  Google Scholar 

  104. Kandolf R, Ameis D, Kirschener P, et al. In situ detection of enteroviral genomes in myocardial cells by nucleic acid hybridization: An approach to the diagnosis of viral heart disease. Proc Natl Acad Sci USA 1987;84:6272–6276.

    PubMed  Google Scholar 

  105. Klingel K, Hohenadl C, Canu A, et al. Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: Quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci USA 1992;89:314–318.

    PubMed  Google Scholar 

  106. Matsumori A, Yutani C, Ikeda Y, et al. Hepatitis C virus from the hearts of patients with myocarditis and cardiomyopathy. Lab Invest 2000;80:1137–1142.

    PubMed  Google Scholar 

  107. Barbaro G, Di Lorenzo G, Grisorio B, et al. Incidence of dilated cardiomyopathy and detection of HIV in myocardial cells of HIV-positive patients. N Engl J Med 1998;339:1093–1099.

    PubMed  Google Scholar 

  108. Pauschinger M, Doerner A, Kaehl U et al. Enteroviral RNA replication in the myocardium of patients with left ventricular dysfunction and clinically suspected myocarditis. Circulation 1999(23);99(7):889–895.

    PubMed  Google Scholar 

  109. Pauschinger M, Bowles NE, Fuentes-Garcia FJ, et al. Detection of adenoviral genome in the myocardium of adult patients with idiopathic left ventricular dysfunction. Circulation 1999;99:1348–1354.

    PubMed  Google Scholar 

  110. Bowles NE, Richardson PJ, Olsen EG, Archard LC. Detection of Coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1986;1(8490):1120–1123.

    PubMed  Google Scholar 

  111. Archard LC, Bowles NE, Cunningham L, et al. Molecular probes for detection of persisting enterovirus infection of human heart and their prognostic value. Eur Heart J 1991;12:56–59.

    PubMed  Google Scholar 

  112. Liu PP, Mason JW. Advances in the understanding of myocarditis. Circulation 2001;104:1076–1082.

    PubMed  Google Scholar 

  113. Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997;275:1320–1323.

    PubMed  Google Scholar 

  114. Noutsias M, Fechner H, de Jonge H, et al. Human coxsackie-adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: Implications for cardiotropic viral infections. Circulation 2001;104:275–280.

    PubMed  Google Scholar 

  115. Fechner H, Noutsias M, Tschoepe C, et al. Induction of coxsackievirus-adenovirus-receptor expression during myocardial tissue formation and remodeling: Identification of a cell-to-cell contact-dependent regulatory mechanism. Circulation 2003;107:876–882.

    PubMed  Google Scholar 

  116. Martino T, Petric M, Weingartl H, et al. The coxsackieadenovirus receptor (CAR) is used by reference strains and clinical isolates representing all 6 serotypes of coxsackievirus group B, and by swine vesicular disease virus. J Virol 2000;271:99–108.

    Google Scholar 

  117. Badorff C, Lee GH, Lamphear BJ, et al. Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 1999;5:320–326.

    PubMed  Google Scholar 

  118. Badorff C, Knowlton K. Role of CVB protease 2A in dystrophin destruction. Nat Med 1999;5:320–326.

    PubMed  Google Scholar 

  119. Huber SA, Pfaeffle B. Differential Th1 and Th2 cell responses in male and female BALB/c mice infected with coxsackievirus group B type 3. J Virol 1994;68:5126–5132.

    PubMed  Google Scholar 

  120. Penninger JM, Pummerer C, Liu P, et al. Cellular and molecular mechanisms of murine autoimmune myocarditis. APMIS 1997;105:1–13.

    PubMed  Google Scholar 

  121. Ono K, Matsumori A, Shioi T, et al. Cytokine gene expression after myocardial infarction in rat hearts: Possible implication in left ventricular remodeling. Circulation 1998;98:149–156.

    PubMed  Google Scholar 

  122. Kühl U, Noutsias M, Seeberg B, Schultheiss H-P. Immunohistological evidence for a chronic intramyocardial inflammatory process in dilated cardiomyopathy. Heart 1996;75:295–300.

    PubMed  Google Scholar 

  123. Shioi T, Matsumori A, Sasayama S. Persistent expression of cytokine in the chronic stage of viral myocarditis in mice. Circulation 1996;94:2930–2937.

    PubMed  Google Scholar 

  124. Pauschinger M, Knopf D, Petschauer S, et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 1999;99:2750–2756.

    PubMed  Google Scholar 

  125. Pauschinger M, Doerner A, Remppis A, Tannhauser R, Kuhl U, Schultheiss HP. Differential myocardial abundance of collagen type I and type III mRNA in dilated cardiomyopathy: Effects of myocardial inflammation. Cardiovasc Res 1998;37:123–129.

    PubMed  Google Scholar 

  126. Li J, Schwimmbeck PL, Tschope C, et al. Collagen degradation in a murine myocarditis model: Relevance of matrix metalloproteinase in association with inflammatory induction. Cardiovasc Res 2002;56:235–247.

    PubMed  Google Scholar 

  127. Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 2000;86:1259–1265.

    PubMed  Google Scholar 

  128. Sivasubramanian N, Coker ML, Kurrelmeyer KM, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 2001;104:826–831.

    PubMed  Google Scholar 

  129. Saed GM, Zhang W, Diamond MP. Effect of hypoxia on stimulatory effect of TGF-beta 1 on MMP-2 and MMP-9 activities in mouse fibroblasts. J Soc Gynecol Investig 2000;7:348–354.

    PubMed  Google Scholar 

  130. Huber SA, Polgar J, Schultheiss P, et al. Augmentation of pathogenesis of coxsackievirus B3 infections in mice by exogenous administration of interleukin-1 and interleukin-2. J Virol 1994;68:195–206.

    PubMed  Google Scholar 

  131. Nishio R, Matsumori A, Shioi T, et al. Treatment of experimental viral myocarditis with interleukin-10. Circulation 1999;100:1102–1108.

    PubMed  Google Scholar 

  132. Kuhl U, Pauschinger M, Schwimmbeck PL, et al. Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 2003;107:2793–2798.

    PubMed  Google Scholar 

  133. Gao CQ, Sawicki G, Suarez-Pinzon WL, et al. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res 2003;57:426–433.

    PubMed  Google Scholar 

  134. Wojnicz R, Nowalany-Kozielska E, Wojciechowska C, et al. Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: Two-year follow-up results. Circulation 2001;104:39–45.

    PubMed  Google Scholar 

  135. Staudt A, Schaper F, Stangl V, et al. Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation 2001;103:2681–2686.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauschinger, M., Chandrasekharan, K. & Schultheiss, HP. Myocardial Remodeling in Viral Heart Disease: Possible Interactions Between Inflammatory Mediators and MMP-TIMP System. Heart Fail Rev 9, 21–31 (2004). https://doi.org/10.1023/B:HREV.0000011391.81676.3c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HREV.0000011391.81676.3c

Navigation