Skip to main content
Log in

Configurational and Elemental Odor Mixture Perception Can Arise from Local Inhibition

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Contrast enhancement via lateral inhibitory circuits is a common mechanism in sensory systems. We here employ a computational model to show that, in addition to shaping experimentally observed molecular receptive fields in the olfactory bulb, functionally lateral inhibitory circuits can also mediate the elemental and configurational properties of odor mixture perception. To the extent that odor perception can be predicted by slow-timescale neural activation patterns in the olfactory bulb, and to the extent that interglomerular inhibitory projections map onto a space of odorant similarity, the model shows that these inhibitory processes in the olfactory bulb suffice to generate the behaviorally observed inverse relationship between two odorants' perceptual similarities and the perceptual similarities between either of these same odorants and their binary mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buonviso N, Chaput MA (1990) Response similarity to odors in olfactory bulb output cells presumed to be connected to the same glomerulus: Electrophysiological study using simultaneous single-unit recordings. J. Neurophysiol. 63: 447-454.

    Google Scholar 

  • Cleland TA, Morse A, Yue EL, Linster C (2002) Behavioral models of odor similarity. Behav. Neurosci. 116: 222-231.

    Google Scholar 

  • Cleland TA, Linster C (1999) Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: A theoretical study. Neural. Comput. 11: 1673-1690.

    Google Scholar 

  • Derby CD, Hutson M, Livermore BA, Lynn WH (1996) Generalization among related complex odorant mixtures and their components: Analysis of olfactory perception in the spiny lobster. Physiol. Behav. 60: 87-95.

    Google Scholar 

  • Duchamp-Viret P, Duchamp A, Chaput M (1993) GABAergic control of odor-induced activity in the frog olfactory bulb: Electrophysiological study with picrotoxin and bicuculline. Neuroscience 53: 111-120.

    Google Scholar 

  • Ennis M, Linster C, Aroniadou-Anderjaska V, Ciombor K, Shipley MT (1998) Glutamate and synaptic plasticity at mammalian primary olfactory synapses. Ann. NY Acad. Sci. 855: 457-466.

    Google Scholar 

  • Galizia CG, Menzel R (2000) Odour perception in honeybees: Coding information in glomerular patterns. Curr. Opin. Neurobiol. 10: 504-510.

    Google Scholar 

  • Hirsch JA, Martinez LM, Alonso JM, Desai K, Pillai C, Pierre C (2002) Synaptic physiology of the flow of information in the cat's visual cortex in vivo. J. Physiol. 540: 335-350.

    Google Scholar 

  • Jinks A, Laing DG (1999) A limit in the processing of components in odour mixtures. Perception. 28: 395-404.

    Google Scholar 

  • Johnson BA, Leon M (2000a) Modular representations of odorants in the glomerular layer of the rat olfactory bulb and the effects of stimulus concentration [see comments]. J. Comp. Neurol. 422: 496-509.

    Google Scholar 

  • Johnson BA, Leon M (2000b) Odorant molecular length: One aspect of the olfactory code. J. Comp. Neurol. 426: 330-338.

    Google Scholar 

  • Johnson BA, Woo CC, Hingco EE, Pham KL, Leon M (1999) Multidimensional chemotopic responses to n-aliphatic acid odorants in the rat olfactory bulb. J. Comp. Neurol. 409: 529-548.

    Google Scholar 

  • Kay LM, Lowry CA, Jacobs HA (2003) Receptor contributions to configural and elemental odor mixture perception. Behav. Neurosci. 117(5): 1108-1114.

    Google Scholar 

  • Kosaka K, Toida K, Aika Y, Kosaka T (1998) How simple is the organization of the olfactory glomerulus?: The heterogeneity of so-called periglomerular cells. Neurosci. Res. 30: 101-110.

    Google Scholar 

  • Laing DG (1987) Coding of chemosensory stimulus mixtures. Ann. NY Acad. Sci. 510: 61-66.

    Google Scholar 

  • Laing DG, Eddy A, Best DJ (1994) Perceptual characteristics of binary, trinary, and quaternary odor mixtures consisting of unpleasant constituents. Physiol. Behav. 56: 81-93.

    Google Scholar 

  • Laing DG, Francis GW (1989) The capacity of humans to identify odors in mixtures. Physiol. Behav. 46: 809-814.

    Google Scholar 

  • Laing DG, Panhuber H, Slotnick BM (1989) Odor masking in the rat. Physiol. Behav. 45: 689-694.

    Google Scholar 

  • Laing DG, Panhuber H, Willcox ME, Pittman EA (1984) Quality and intensity of binary odor mixtures. Physiol. Behav. 33: 309-319.

    Google Scholar 

  • Laing DG, Willcox ME (1987) An investigation of the mechanisms of odor suppression using physical and dichorhinic mixtures. Behav. Brain Res. 26: 79-87.

    Google Scholar 

  • Laska M, Hudson R (1993) Discriminating parts from the whole: Determinants of odor mixture perception in squirrel monkeys, Saimiri sciureus. J. Comp. Physiol. [A] 173: 249-256.

    Google Scholar 

  • Leon M, Johnson BA (2003) Olfactory coding in the mammalian olfactory bulb. Brain Res. Brain Res. Rev. 42: 23-32.

    Google Scholar 

  • Linster C, Cleland TA (2002) Cholinergic modulation of sensory representations in the olfactory bulb. Neural. Netw. 15: 709-717.

    Google Scholar 

  • Linster C, Garcia PA, Hasselmo ME, Baxter MG (2001a) Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants. Behav. Neurosci. 115: 826-833.

    Google Scholar 

  • Linster C, Gervais R (1996) Investigation of the role of interneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb. J. Comput. Neurosci. 3: 225-246.

    Google Scholar 

  • Linster C, Hasselmo M (1997) Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli. Behav. Brain. Res. 84: 117-127.

    Google Scholar 

  • Linster C, Hasselmo ME (1999) Behavioral responses to aliphatic aldehydes can be predicted from known electrophysiological responses of mitral cells in the olfactory bulb. Physiol. Behav. 66: 497-502.

    Google Scholar 

  • Linster C, Johnson BA, Morse A, Yue E, Leon M (2002) Spontaneous versus reinforced olfactory discriminations. J. Neurosci. 22: 6842-6845.

    Google Scholar 

  • Linster C, Johnson BA, Yue E, Morse A, Xu Z, Hingco EE, Choi Y, Choi M, Messiha A, Leon M (2001b) Perceptual correlates of neural representations evoked by odorant enantiomers. J. Neurosci. 21: 9837-9843.

    Google Scholar 

  • Linster C, Smith BH (1999) Generalization between binary odor mixtures and their components in the rat. Physiol. Behav. 66: 701-707.

    Google Scholar 

  • Luo M, Katz LC (2001) Response correlation maps of neurons in the mammalian olfactory bulb. Neuron. 32: 1165-1179.

    Google Scholar 

  • Meister M, Bonhoeffer T (2001) Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21: 1351-1360.

    Google Scholar 

  • Meredith M (1986) Patterned response to odor in mammalian olfactory bulb: The influence of intensity. J. Neurophysiol. 56: 572-597.

    Google Scholar 

  • Mori K, Nagao H, Sasaki YF (1998) Computation of molecular information in mammalian olfactory systems. Network. 9: R79-R102.

    Google Scholar 

  • Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: Coding and processing of odor molecule information. Science 286: 711-715.

    Google Scholar 

  • Pinching AJ, Powell TP (1971a) The neuron types of the glomerular layer of the olfactory bulb. J. Cell. Sci. 9: 305-345.

    Google Scholar 

  • Pinching AJ, Powell TP (1971b) The neuropil of the glomeruli of the olfactory bulb. J. Cell. Sci. 9: 347-377.

    Google Scholar 

  • Pinching AJ, Powell TP (1971c) The neuropil of the periglomerular region of the olfactory bulb. J. Cell. Sci. 9: 379-409.

    Google Scholar 

  • Rubin BD, Katz LC (1999) Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron. 23: 499-511.

    Google Scholar 

  • Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: A calcium imaging study. J. Neurophysiol. 87: 1106-1117.

    Google Scholar 

  • Schreiner CE, Read HL, Sutter ML (2000) Modular organization of frequency integration in primary auditory cortex. Annu. Rev. Neurosci. 23: 501-529.

    Google Scholar 

  • Scott JW, Wellis DP, Riggott MJ, Buonviso N (1993) Functional organization of the main olfactory bulb. Microsc. Res. Tech. 24: 142-156.

    Google Scholar 

  • Shepherd GM (1985) The olfactory system: The uses of neural space for a non-spatial modality. Prog. Clin. Biol. Res. 176: 99-114.

    Google Scholar 

  • Shipley MT, Ennis M (1996) Functional organization of olfactory system. J. Neurobiol. 30: 123-176.

    Google Scholar 

  • Smith BH (1996) The role of attention in learning about odorants. Biol. Bull. 191: 76-83.

    Google Scholar 

  • Smith BH (1998) Analysis of interaction in binary odorant mixtures. Physiol. Behav. 65: 397-407.

    Google Scholar 

  • Smith TC, Jahr CE (2002) Self-inhibition of olfactory bulb neurons. Nat. Neurosci. 5: 760-766.

    Google Scholar 

  • Staubli U, Fraser D, Faraday R, Lynch G (1987) Olfaction and the "data" memory system in rats. Behav. Neurosci. 101: 757-765.

    Google Scholar 

  • Sutter ML, Schreiner CE, McLean M, O'Connor KN, Loftus WC (1999) Organization of inhibitory frequency receptive fields in cat primary auditory cortex. J. Neurophysiol. 82: 2358-2371.

    Google Scholar 

  • Uchida N, Takahashi YK, Tanifuji M, Mori K (2000) Odor maps in the mammalian olfactory bulb: Domain organization and odorant structural features. Nat. Neurosci. 3: 1035-1043.

    Google Scholar 

  • Urban NN (2002) Lateral inhibition in the olfactory bulb and in olfaction. Physiol. Behav. 77: 607-612.

    Google Scholar 

  • Wiltrout C, Dogra A, Linster C (2003) Configurational and nonconfigurational interactions in binary olfactory mixtures. Behavioral Neuroscience 117: 236-245.

    Google Scholar 

  • Xing J, Gerstein GL (1994) Simulation of dynamic receptive fields in primary visual cortex. Vision Res. 34: 1901-1911.

    Google Scholar 

  • Xing J, Gerstein GL (1996) Networks with lateral connectivity. I. dynamic properties mediated by the balance of intrinsic excitation and inhibition. J. Neurophysiol. 75: 184-199.

    Google Scholar 

  • Yokoi M, Mori K, Nakanishi S (1995) Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 92: 3371-3375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linster, C., Cleland, T.A. Configurational and Elemental Odor Mixture Perception Can Arise from Local Inhibition. J Comput Neurosci 16, 39–47 (2004). https://doi.org/10.1023/B:JCNS.0000004840.87570.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000004840.87570.2e

Navigation