Skip to main content
Log in

Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

[NiFe] hydrogenases are well-characterized enzymes that have a key function in the H2 metabolism of various microorganisms. In the recent years a subfamily of [NiFe] hydrogenases with unique properties has been identified. The members of this family form multisubunit membrane-bound enzyme complexes composed of at least four hydrophilic and two integral membrane proteins. These six conserved subunits, which built the core of these hydrogenases, have closely related counterparts in energy-conserving NADH:quinone oxidoreductases (complex I). However, the reaction catalyzed by these hydrogenases differs significantly from the reaction catalyzed by complex I. For some of these hydrogenases the physiological role is to catalyze the reduction of H+ with electrons derived from reduced ferredoxins or polyferredoxins. This exergonic reaction is coupled to energy conservation by means of electron-transport phosphorylation. Other members of this hydrogenase family mainly function to provide the cell with reduced ferredoxin with H2 as electron donor in a reaction driven by reverse electron transport. As complex I these hydrogenases function as ion pumps and have therefore been designated as energy-converting [NiFe] hydrogenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albracht, S. P., and Hedderich, R. (2000). FEBS Lett. 485, 1-6.

    Google Scholar 

  • Albracht, S. P. J. (1994). Biochim. Biophys. Acta 1188, 167-204.

    Google Scholar 

  • Andrews, S. C., Berks, B. C., McClay, J., Ambler, A., Quail, M. A., Golby, P., and Guest, J. R. (1997). Microbiology 143, 3633-3647.

    Google Scholar 

  • Bao, Q., Tian, Y., Li, W., Xu, Z., Xuan, Z., Hu, S., Dong, W., Yang, J., Chen, Y., Xue, Y., Xu, Y., Lai, X., Huang, L., Dong, X., Ma, Y., Ling, L., Tan, H., Chen, R., Wang, J., Yu, J., and Yang, H. (2002). Genome Res. 12, 689-700. f

    Google Scholar 

  • Bertram, P. A., and Thauer, R. K. (1994). Eur. J. Biochem. 226, 811-818.

    Google Scholar 

  • Blokesch, M., Paschos, A., Theodoratou, E., Bauer, A., Hube, M., Huth, S., and Bock, A. (2002). Biochem. Soc. Trans. 30, 674-680.

    Google Scholar 

  • Bock, A. K., Kunow, J., Glasemacher, J., and Schönheit, P. (1996). Eur. J. Biochem. 237, 35-44.

    Google Scholar 

  • Böhm, R., Sauter, M., and Böck, A. (1990). Mol. Microbiol. 4, 231-243.

    Google Scholar 

  • Bonam, D., and Ludden, P. W. (1987). J. Biol. Chem. 262, 2980-2987.

    Google Scholar 

  • Bott, M., Eikmanns, B., and Thauer, R. K. (1986). Eur. J. Biochem. 159, 393-398.

    Google Scholar 

  • Bott, M., and Thauer, R. K. (1989). Eur. J. Biochem. 179, 469-472.

    Google Scholar 

  • Brandt, U., Kerscher, S., Drose, S., Zwicker, K., and Zickermann, V. (2003). FEBS Lett. 545, 9-17.

    Google Scholar 

  • Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., FitzGerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage, A. R., Dougherty, B. A., Tomb, J. F., Adams, M. D., Reich, C. I., Overbeek, R., Kirkness, E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott, J. L., Geoghagen, N. S. M., and Venter, J. C. (1996). Science 273, 1058-1073.

    Google Scholar 

  • Darrouzet, E., Issartel, J. P., Lunardi, J., and Dupuis, A. (1998). FEBS Lett. 431, 34-38.

    Google Scholar 

  • Deppenmeier, U., Müller, V., and Gottschalk, G. (1996). Arch. Microbiol. 165, 149-163.

    Google Scholar 

  • Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R., and Meyer, O. (2001). Science 293, 1281-1285.

    Google Scholar 

  • Drennan, C. L., Heo, J., Sintchak, M. D., Schreiter, E., and Ludden, P. W. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 11973-11978.

    Google Scholar 

  • Ensign, S. A., and Ludden, P. W. (1991). J. Biol. Chem. 266, 18395-18403.

    Google Scholar 

  • Ferry, J. G. (1997). Biofactors 6, 25-35.

    Google Scholar 

  • Fox, J. D., He, Y., Shelver, D., Roberts, G. P., and Ludden, P. W. (1996b). J. Bacteriol. 178, 6200-6208.

    Google Scholar 

  • Fox, J. D., Kerby, R. L., Roberts, G. P., and Ludden, P. W. (1996a). J. Bacteriol. 178, 1515-1524.

    Google Scholar 

  • Friedrich, T., and Scheide, D. (2000). FEBS Lett. 479, 1-5.

    Google Scholar 

  • Friedrich, T., and Weiss, H. (1997). J. Theor. Biol. 187, 529-540.

    Google Scholar 

  • Garcin, E., Montet, Y., Volbeda, A., Hatchikian, C., Frey, M., and Fontecilla-Camps, J. C. (1998). Biochem. Soc. Trans. 26, 396-401.

    Google Scholar 

  • Hamamoto, T., Hashimoto, M., Hino, M., Kitada, M., Seto, Y., Kudo, T., and Horikoshi, K. (1994). Mol. Microbiol. 14, 939-946.

    Google Scholar 

  • Ingledew, W. J., and Ohnishi, T. (1980). Biochem. J. 186, 111-117.

    Google Scholar 

  • Kaesler, B., and Schönheit, P. (1989a). Eur. J. Biochem. 184, 223-232.

    Google Scholar 

  • Kaesler, B., and Schönheit, P. (1989b). Eur. J. Biochem. 186, 309-316.

    Google Scholar 

  • Kashani-Poor, N., Zwicker, K., Kerscher, S., and Brandt, U. (2001). J. Biol. Chem. 276, 24082-24087.

    Google Scholar 

  • Kerby, R. L., Hong, S. S., Ensign, S. A., Coppoc, L. J., Ludden, P. W., and Roberts, G. P. (1992). J. Bacteriol. 174, 5284-5294.

    Google Scholar 

  • Kerby, R. L., Ludden, P. W., and Roberts, G. P. (1995). J. Bacteriol. 177, 2241-2244.

    Google Scholar 

  • Kerby, R. L., Ludden, P. W., and Roberts, G. P. (1997). J. Bacteriol. 179, 2259-2266.

    Google Scholar 

  • Künkel, A., Vorholt, J. A., Thauer, R. K., and Hedderich, R. (1998). Eur. J. Biochem. 252, 467-476.

    Google Scholar 

  • Kurkin, S., Meuer, J., Koch, J., Hedderich, R., and Albracht, S. P. (2002). Eur. J. Biochem. 269, 6101-6111.

    Google Scholar 

  • Malki, S., Saimmaime, I., De Luca, G., Rousset, M., Dermoun, Z., and Belaich, J. P. (1995). J. Bacteriol. 177, 2628-2636.

    Google Scholar 

  • Meuer, J., Bartoschek, S., Koch, J., Künkel, A., and Hedderich, R. (1999). Eur. J. Biochem. 265, 325-335.

    Google Scholar 

  • Meuer, J., Kuettner, H. C., Zhang, J. K., Hedderich, R., and Metcalf, W. W. (2002). Proc. Natl. Acad. Sci. U.S.A. 99, 5632-5637.

    Google Scholar 

  • Nicolet, Y., Cavazza, C., and Fontecilla-Camps, J. C. (2002). J. Inorg. Biochem. 91, 1-8.

    Google Scholar 

  • Putnoky, P., Kereszt, A., Nakamura, T., Endre, G., Grosskopf, E., Kiss, P., and Kondorosi, A. (1998). Mol. Microbiol. 28, 1091-1101.

    Google Scholar 

  • Sapra, R., Bagramyan, K., and Adams, M. W. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 7545-7550.

    Google Scholar 

  • Sapra, R., Verhagen, M., and Adams, M. W. W. (2000). J. Bacteriol. 182, 3423-3428.

    Google Scholar 

  • Sauter, M., Böhm, R., and Böck, A. (1992). Mol. Microbiol. 6, 1523-1532.

    Google Scholar 

  • Schwarz, E., and Friedrich, B. (2003). In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community (Dworkin, M., ed.), Springer, New York. Retrieved from http://141.150.157.117:8080/prokPUB/index.htm

    Google Scholar 

  • Shelver, D., Kerby, R. L., He, Y., and Roberts, G. P. (1997). Proc. Natl. Acad. Sci. U.S.A. 94, 11216-11220.

    Google Scholar 

  • Silva, P. J., van den Ban, E. C., Wassink, H., Haaker, H., de Castro, B., Robb, F. T., and Hagen, W. R. (2000). Eur. J. Biochem. 267, 6541-6551.

    Google Scholar 

  • Skibinski, D. A., Golby, P., Chang, Y. S., Sargent, F., Hoffman, R., Harper, R., Guest, J. R., Attwood, M. M., Berks, B. C., and Andrews, S. C. (2002). J. Bacteriol. 184, 6642-6653.

    Google Scholar 

  • Slesarev, A. I., Mezhevaya, K. V., Makarova, K. S., Polushin, N. N., Shcherbinina, O. V., Shakhova, V. V., Belova, G. I., Aravind, L., Natale, D. A., Rogozin, I. B., Tatusov, R. L., Wolf, Y. I., Stetter, K. O., Malykh, A. G., Koonin, E. V., and Kozyavkin, S. A. (2002). Proc. Natl. Acad. Sci. U.S.A. 99, 4644-4649.

    Google Scholar 

  • Soboh, B., Linder, D., and Hedderich, R. (2002). Eur. J. Biochem. 269, 5712-5721.

    Google Scholar 

  • Svetlichny, V. A., Sokolova, T. G., Gerhardt, M., Ringpfeil, M., Kostrikina, N. A., and Zavarzin, G. A. (1991). Syst. Appl. Microbiol. 14, 254-260.

    Google Scholar 

  • Svetlitchnyi, V., Peschel, C., Acker, G., and Meyer, O. (2001). J. Bacteriol. 183, 5134-5144.

    Google Scholar 

  • Tersteegen, A., and Hedderich, R. (1999). Eur. J. Biochem. 264, 930-943.

    Google Scholar 

  • Thauer, R. K. (1998). Microbiology 144, 2377-2406.

    Google Scholar 

  • Thauer, R. K., Klein, A. R., and Hartmann, G. C. (1996). Chem. Rev. 96, 3031-3042.

    Google Scholar 

  • Tran-Betcke, A., Warnecke, U., Bocker, C., Zaborosch, C., and Friedrich, B. (1990). J. Bacteriol. 172, 2920-2929.

    Google Scholar 

  • Uffen, R. L. (1976). Proc. Natl. Acad. Sci. U.S.A. 73, 3298-3302.

    Google Scholar 

  • Vignais, P. M., Billoud, B., and Meyer, J. (2001). FEMS Microbiol. Rev. 25, 455-501.

    Google Scholar 

  • Volbeda, A., Charon, M. H., Piras, C., Hatchikian, E. C., Frey, M., and Fontecilla-Camps, J. C. (1995). Nature 373, 580-587.

    Google Scholar 

  • Vorholt, J. A., Vaupel, M., and Thauer, R. K. (1996). Eur. J. Biochem. 236, 309-317.

    Google Scholar 

  • Winner, C., and Gottschalk, G. (1989). FEMS Microbiol. Lett. 65, 259-264.

    Google Scholar 

  • Xue, Y., Xu, Y., Liu, Y., Ma, Y., and Zhou, P. (2001). Int. J. Syst. Evol. Microbiol. 51, 1335-1341.

    Google Scholar 

  • Yagi, T., Yano, T., Di Bernardo, S., and Matsuno-Yagi, A. (1998). Biochim. Biophys. Acta 1364, 125-133.

    Google Scholar 

  • Yano, T., and Ohnishi, T. (2001). J. Bioenerg. Biomembr. 33, 213-222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedderich, R. Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I. J Bioenerg Biomembr 36, 65–75 (2004). https://doi.org/10.1023/B:JOBB.0000019599.43969.33

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000019599.43969.33

Navigation