Skip to main content
Log in

Antioxidant and oxidative stress changes in experimental cor pulmonale

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although right heart failure (RHF) contributes to 20% of all cardiovascular complications, most of the information available on RHF in general is based on the experiences with left heart failure. This study on RHF investigates changes in antioxidants and oxidative stress which are suggested to play a role in the transition from hypertrophy to failure. RHF subsequent to pulmonary hypertension was produced in rats by a single injection of monocrotaline (MCT, 60 mg/kg, i.p.). Based on hemodynamic, clinical and histopathologic observations, the animals were grouped in three functional stages at 1-, 2- and 6-week post-injection periods. In the 1-week group, RV pressure overload and hypertrophy, and a mild increase in antioxidant enzymes was seen. In the 2-week group, compensated HF, a significant increase in antioxidant enzymes, an increase in septal (IVS) wall thickness and leftward displacement of IVS without change in LV free wall were seen. In the 6-week group, lung and liver congestion, RVF and dilation, a decrease in antioxidant enzyme activities, increase in lipid peroxidation and severe bulging of the IVS into the left ventricle were seen. These changes in the hemodynamic, biochemical and histopathologic characteristics suggest that in early stages of MCT-induced pulmonary hypertension at 1 and 2 weeks, RV hypertrophy was accompanied by sustained hemodynamic function and an increase in antioxidant reserve. In the later stage at 6 weeks, clinical RHF was associated with abnormalities of the right heart systolic and diastolic function along with a decrease in antioxidant reserve. These biphasic changes in RV antioxidant enzymes, i.e. an increase during hypertrophy and a decrease in failure may suggest a role of oxidative stress in the pathogenesis of right ventricular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baum GL, Crapo JD, Celli BR, Karlinsky JB: Textbook of Pulmonary Disease, 6th ed. Lippincott Raven, Philadelphia, PA, 1998

    Google Scholar 

  2. Bing RJ: The biochemical basis of myocardial failure. Hosp Pract 18: 93-97, 1983

    Google Scholar 

  3. Bristow MR, Ginsburg R, Minobe WA, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB: Decreased catecholamine sensitivity and β-adrenergic receptor density in failing human hearts. N Engl J Med 307: 205-211, 1982

    PubMed  Google Scholar 

  4. Vatner DE, Vatner SF, Fujii AM, Homcy CJ: Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure. J Clin Invest 76: 2259-2264, 1985

    PubMed  Google Scholar 

  5. Braunwald E, Sonnenblick EH, Ross J: Mechanisms of cardiac contraction and relaxation. In: E. Braunwald (ed). Heart Disease: A Textbook of Cardiovascular Medicine. WB Saunders, Philadelphia, PA, 1997, pp 383-425

    Google Scholar 

  6. Belch JJ, Bridges AB, Scott N, Chopra M: Oxygen free radicals and congestive heart failure. Br Heart J 65: 245-248, 1991

    PubMed  Google Scholar 

  7. Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK: Free radicals and the heart. J Pharmacol Toxicol Meth 30: 55-67, 1993

    Article  Google Scholar 

  8. Hill MF, Singal PK: Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148: 291-300, 1996

    PubMed  Google Scholar 

  9. Siveski-Iliskovic N, Kaul N, Singal PK: Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation 89: 2829-2835, 1994

    PubMed  Google Scholar 

  10. Singal PK, Khaper N, Palace V, Kumar D: The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 40: 426-432, 1998

    Article  PubMed  Google Scholar 

  11. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw B-A: Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335: 1182-1189, 1996

    Article  PubMed  Google Scholar 

  12. McMurray J, McLay J, Chopra M, Bridges A, Belch JJ: Evidence for enhanced free radical activity in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 65: 1261-1262, 1990

    Article  PubMed  Google Scholar 

  13. Sobotka PA, Brottman MD, Weitz Z, Birnbaum AJ, Skosey JL, Zarling EJ: Elevated breath pentane in heart failure reduced by free radical scavenger. Free Radical Biol Med 14: 643-647, 1993

    Article  Google Scholar 

  14. Pichardo J, Palace V, Farahmand F, Singal PK: Myocardial oxidative stress changes during compensated right heart failure in rats. Mol Cell Biochem 196: 51-57, 1999

    Article  PubMed  Google Scholar 

  15. Clairborne A: Catalase activity. In: R.A. Greenwald (ed). Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, FL, 1985, pp 243-247

    Google Scholar 

  16. Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169, 1967

    PubMed  Google Scholar 

  17. Marklund SL: Pyrogallol autooxidation. In: R.A. Greenwald (ed). Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, FL, 1985, pp 283-284

    Google Scholar 

  18. Singal PK, Pierce GN: Adriamycin stimulates low affinity Ca2+-binding and lipid peroxidation but depresses myocardial function. Am J Physiol 250: H419-H425, 1986

    PubMed  Google Scholar 

  19. Lowry OH, Rosenberg NT, Farr AL, Randall AT: Protein measurements with the folin phenol reagent. J Biol Chem 193: 265-275, 1951

    PubMed  Google Scholar 

  20. Werchan PM, Summer WR, Gerdes AM, McDonough KH: Right ventricular performance after monocrotaline-induced pulmonary hypertension. Am J Physiol 256: H1328-H1336, 1989

    PubMed  Google Scholar 

  21. Plestina R, Stoner HB: Pulmonary oedema in rats given monocrotaline pyrrole. J Pathol 106: 444-454, 1972

    Google Scholar 

  22. Heath D: Mast cells in the human lung at high altitude. Int J Biometeorol 36: 210-213, 1992

    PubMed  Google Scholar 

  23. Hayashi Y, Kato M, Otsuka H: Inhibitory effects of diet-reduction on monocrotaline intoxication in rats. Toxicol Lett 21: 65-71, 1979

    Article  Google Scholar 

  24. Comini L, Agnoletti G, Panzali A, Mantero G, Pasini E, Gaia G, Albertini A, Ferrari A: Activation of atrial natriuretic peptide synthesis during congestive heart failure in rats treated with monocrotaline. Am J Physiol 268: H391-H398, 1995

    PubMed  Google Scholar 

  25. Cohen HA, Baird MG, Rouleau JR, Fuhrmann CF, Bailey IK, Summer WR, Strauss HW, Pitt B: Thallium 201 myocardial imaging in patients with pulmonary hypertension. Circulation 54: 790-795, 1976

    PubMed  Google Scholar 

  26. Ohsuzu F, Handa S, Kondo M, Yamazaki H, Tsugu T, Kubo A, Takagi Y, Nakamura Y: Thallium-201 myocardial imaging to evaluate right ventricular overloading. Circulation 61: 620-625, 1980

    PubMed  Google Scholar 

  27. Bemis CE, Serur JR, Borkenhagen D, Sonnenblick EH, Urschel CW: Influence of right ventricular filling pressure on left ventricular pressure and dimension. Circ Res 34: 498-504, 1974

    PubMed  Google Scholar 

  28. Kingma I, Tyberg JV, Smith ER: Effects of diastolic transseptal pressure gradient on ventricular septal position and motion. Circulation 68: 1304-1314, 1983

    PubMed  Google Scholar 

  29. Brinker JA, Weiss JL, Lappe DL, Rabson JL, Summer WR, Permutt S, Weisfeldt ML: Leftward septal displacement during right ventricular loading in man. Circulation 61: 626-633, 1980

    PubMed  Google Scholar 

  30. Louie EK, Rich S, Brundage BH: Doppler echocardiographic assessment of impaired left ventricular filling in patients with right ventricular pressure overload due to primary pulmonary hypertension. J Am Coll Cardiol 8: 1298-1306, 1986

    PubMed  Google Scholar 

  31. Klima UP, Lee MY, Guerrero JL, Laraia PJ, Levine RA, Vlahakes GJ: Determinants of maximal right ventricular function: Role of septal shift. J Thorac Cardiovasc Surg 123: 72-80, 2002

    Article  PubMed  Google Scholar 

  32. McMurray JJ, Ray SG, Abdullah I, Dargie HJ, Morton JJ: Plasma endothelin in chronic heart failure. Circulation 85: 1374-1379, 1992

    PubMed  Google Scholar 

  33. Diaz-Velez CR, Garcia-Castineiras S, Mendoza-Ramos E, Hernandez-Lopez E: Increased malondialdehyde in peripheral blood of patients with congestive heart failure. Am Heart J 131: 146-152, 1996

    Article  PubMed  Google Scholar 

  34. Gupta M, Singal PK: Higher antioxidative capacity during a chronic stable heart hypertrophy. Circ Res 64: 398-406, 1989

    PubMed  Google Scholar 

  35. Blaustein AS, Schine L, Brooks WW, Fanburg BL, Bing OHL: Influence of exogenously generated oxidant species on myocardial function. Am J Physiol 250: H595-H599, 1986

    PubMed  Google Scholar 

  36. Dhalla AK, Singal PK: Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J Physiol 266: H1280-H1285, 1994

    PubMed  Google Scholar 

  37. Palace VP, Hill MF, Farahmand F, Singal PK: Mobilization of antioxidant vitamin pools and hemodynamic function after myocardial infarction. Circulation 99: 121-126, 1999

    PubMed  Google Scholar 

  38. Klein HH, Pich S, Lindert-Heimberg S, Nebendahl K, Niedmann P: Failure of chronic, high-dose, oral vitamin E treatment to protect the ischemic, reperfused porcine heart. J Mol Cell Cardiol 25: 103-112, 1993

    Article  PubMed  Google Scholar 

  39. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P: Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Study Investigators. N Engl J Med 342: 154-160, 2000

    Article  PubMed  Google Scholar 

  40. Dhalla AK, Hill MF, Singal PK: Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 28: 506-514, 1996

    Article  PubMed  Google Scholar 

  41. Reddy K, Tappel AL: Effect of dietary selenium and autooxidized lipids on the glutathione peroxidase of gastro-intestinal tract and other tissues in the rat. J Nutr 104: 1069-1078, 1974

    PubMed  Google Scholar 

  42. Kimball RF, Reddy K, Pierce TH, Schwartz LW, Mustafa MG, Cross CE: Oxygen toxicity: Augmentation of antioxidant defence mechanisms in rat lung. Am J Physiol 230: 1425-1431, 1976

    PubMed  Google Scholar 

  43. Chow CK, Tappel AL: An enzymatic protective mechanism against lipid peroxidation damage to lungs of ozone exposed rats. Lipids 7: 518-524, 1972

    PubMed  Google Scholar 

  44. Cowan DB, Weisel RD, Williams WG, Mickle DAG: Identification of oxygen responsive elements in the 5′-flanking region of the human glutathione peroxidase gene. J Biol Chem 268: 26904-26910, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singal, P.K., Farahmand, F. & Hill, M.F. Antioxidant and oxidative stress changes in experimental cor pulmonale . Mol Cell Biochem 260, 21–29 (2004). https://doi.org/10.1023/B:MCBI.0000026047.48534.50

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000026047.48534.50

Navigation