Skip to main content
Log in

Role of Vanilloid Receptors in the Capsaicin-Mediated Induction of iNOS in PC12 Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The vanilloid receptor 1(VR1) is a nonselective cation channel that is activated by pungent vanilloid compound, extracellular protons, or noxious heat. mRNA of VR1 and vanilloid receptor 1–like receptor (VRL1) were expressed in PC12 cells, and only VR1 mRNA was detected in glioma and A10 cell lines. VR1 protein was demonstrated in PC12 cells by immunocytochemistry and Western blotting. Capsaicin (CPS), the VR1 receptor agonist, led to an increase in intracellular calcium ion, and this effect was blocked by pretreatment with VR1 receptor antagonist capsazepin (CPZ). Treatment of PC12 cells with low concentration of CPS (5–50 μM) increased reactive oxygen species (ROS) production, and inducible nitric oxide synthase (iNOS) was expressed after CPS treatment for 24 h. These CPS-induced changes are inhibited by pretreatment of CPZ. These findings suggest that CPS-induced iNOS expression through the VR1 and/or VRL1-mediated pathway, and this may explain the CPS-mediated physiological and pathological effects in neuron system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I., and Julius, D. 1998. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543.

    Google Scholar 

  2. Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D, and Julius, D. 1997. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389:816–824.

    Google Scholar 

  3. Mezey, E., Toth, Z. E., Cortright, D. N., Arzubi, M. K., Krause, J. E., Elde, R., Guo, A., Blumberg, P. M., and Szallasi, A. 2000. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci. USA 97:3655–3660.

    Google Scholar 

  4. Sasamura, T., Sasaki, M., Tohda, C., and Kuraishi, Y. 1998. Existence of capsaicin-sensitive glutamatergic terminals in rat hypothalamus. Neuroreport 9:2045–2048.

    Google Scholar 

  5. Veronesi, B., Oortgiesen, M., Carter, J. D., and Devlin, R. B. 1999. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line. Toxicol. Appl. Pharmacol. 154:106–115.

    Google Scholar 

  6. Biro, T., Maurer, M., Modarres, S., Lewin, N. E., Brodie, C., Acs, G., Acs, P., Paus, R., Blumberg, P. M. 1998. Characterization of functional vanilloid receptors expressed by mast cells. Blood 91: 1332–1340.

    Google Scholar 

  7. Biro, T., Brodie, C., Modarres, S., Lewin, N. E., Acs, P., Blumberg, P. M. 1998. Specific vanilloid responses in C6 rat glioma cells. Brain Res. Mol. Brain Res. 56:89–98.

    Google Scholar 

  8. Inoue, K., Koizumi, S., Fuziwara, S., Denda, S., Inoue, K., and Denda, M. 2002. Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem. Biophys. Res. Commun. 291:124–129.

    Google Scholar 

  9. Choi, S. Y., and Kim, K. T. 1999. Capsaicin inhibits phospholipase C-mediated Ca2+ increase by blocking thapsigargin-sensitive store-operated Ca2+ entry in PC12 cells. J. Pharmacol. Exp. Ther. 291: 107–114.

    Google Scholar 

  10. Pandita, R. K., Persson, K., and Andersson, K. E. 1997. Capsaicin-induced bladder overactivity and nociceptive behaviour in conscious rats: Involvement of spinal nitric oxide. J. Auton. Nerv. Syst. 67:184–191.

    Google Scholar 

  11. Wu. J., Fang, L., Lin, Q., and Willis, W. D. 2001. Nitric oxide synthase in spinal cord central sensitization following intradermal injection of capsaicin. Pain 94:47–58.

    Google Scholar 

  12. Farkas-Szallasi. T., Lundberg, J. M., Wiesenfeld-Hallin, Z., Hokfelt, T., and Szallasi, A. 1995. Increased levels of GMAP, VIP and nitric oxide synthase, and their mRNAs, in lumbar dorsal root ganglia of the rat following systemic resiniferatoxin treatment. Neuroreport 6:2230–2234.

    Google Scholar 

  13. Okere, C. O., Kaba, H., and Higuchi, T. 2000. Importance of endogenous nitric oxide synthase in the rat hypothalamus and amygdala in mediating the response to capsaicin. J. Comp. Neurol. 423:670–686.

    Google Scholar 

  14. Guo, A., Vulchanova, L., Wang, J., Li, X., and Elde, R. 1999. Immunocytochemical localization of the vanilloid receptor 1 (VR1): Relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur. J. Neurosci. 11:946–958.

    Google Scholar 

  15. Bevan, S., Hothi, S., Hughes, G., James, I. F., Rang, H. P., Shah, K., Walpole, C. S., and Yeats, J. C. 1992. Capsazepine: A competitive antagonist of the sensory neurone excitant capsaicin. Br. J. Pharmacol. 107:544–552.

    Google Scholar 

  16. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.

    Google Scholar 

  17. Wang, H., and Joseph, J. A. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free. Radic. Biol. Med. 27:612–616.

    Google Scholar 

  18. Jahnel, R., Dreger. M., Gillen, C., Bender, O., Kurreck, J., and Hucho, F. 2001. Biochemical characterization of the vanilloid receptor 1 expressed in a dorsal root ganglia derived cell line. Eur. J. Biochem. 268:5489–5496.

    Google Scholar 

  19. Olah, Z., Karai, L., and Iadarola, M. J. 2001. Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J. Biol. Chem. 276:31163–31170.

    Google Scholar 

  20. Kedei, N., Szabo, T., Lile, J. D., Treanor, J. J., Olah, Z., Iadarola, M. J., and Blumberg, P. M. 2001. Analysis of the native quaternary structure of vanilloid receptor 1. J. Biol. Chem. 276:28613–28619.

    Google Scholar 

  21. Sprague, J., Harrison, C., Rowbotham, D. J., Smart, D., and Lambert, D. G. 2001. Temperature-dependent activation of recombinant rat vanilloid VR1 receptors expressed in HEK293 cells by capsaicin and anandamide. Eur. J. Pharmacol. 423:121–125.

    Google Scholar 

  22. Nakazawa, K., Inoue, K., Koizumi, S., Ikeda, M., and Inoue, K. 1994. Inhibitory effects of capsaicin on acetylcholine-evoked responses in rat phaeochromocytoma cells. Br. J. Pharmacol. 113:296–302.

    Google Scholar 

  23. Liu, L., and Simon, S. A. 1997. Capsazepine, a vanilloid receptor antagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal ganglia. Neurosci. Lett. 228:29–32.

    Google Scholar 

  24. Docherty, R. J., Yeats, J. C., and Piper, A. S. 1997. Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br. J. Pharmacol. 121:1461–1467.

    Google Scholar 

  25. Ahluwalia, J., Urban, L., Capogna, M., Bevan, S., and Nagy, I. 2000. Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100:685–688.

    Google Scholar 

  26. Dedov, V. N., and Roufogalis, B. D. 2000. Mitochondrial calcium accumulation following activation of vanilloid (VR1) receptors by capsaicin in dorsal root ganglion neurons. Neuroscience 95:183–188.

    Google Scholar 

  27. Dykens, J. A. 1994. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. J. Neurochem. 63:584–691.

    Google Scholar 

  28. Kowaltowski, A. J., Netto, L. E., and Vercesi, A. E. 1998. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition: Evidence for the participation of reactive oxygen species in this mechanism. J. Biol. Chem. 273:12766–12769.

    Google Scholar 

  29. Sousa, S. C., Maciel, E. N., Vercesi, A. E., and Castilho, R. F. 2003. Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone. FEBS Lett. 543:179–183.

    Google Scholar 

  30. Shimomura, Y., Kawada, T., and Suzuki, M. 1989. Capsaicin and its analogs inhibit the activity of NADH-coenzyme Q oxidoreductase of the mitochondrial respiratory chain. Arch. Biochem. Biophys. 270:573–577.

    Google Scholar 

  31. Yagi, T. 1990. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch Biochem Biophys. 281:305–311.

    Google Scholar 

  32. Morre, D. J., Chueh, P. J., and Morre, D. M. 1995. Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc. Natl. Acad. Sci. USA 92:1831–1835.

    Google Scholar 

  33. Sun, I. L., Sun, E. E., Crane, F. L., Morre, D. J., Lindgren, A. and Low, H. 1992. Requirement for coenzyme Q in plasma membrane electron transport. Proc. Natl. Acad. Sci. USA 89:11126–11130.

    Google Scholar 

  34. Wolvetang, E. J., Larm, J. A., Moutsoulas, P., and Lawen, A. 1996. Apoptosis induced by inhibitors of the plasma membrane NADH-oxidase involves Bcl-2 and calcineurin. Cell Growth Differ. 7:1315–1325.

    Google Scholar 

  35. Crane, F., Morre, D. J., and Low, H. 1990. Oxidoreduction at the plasma membrane: Control of growth and transport, CRC Press, Boca Raton, Fa.

    Google Scholar 

  36. Jacobson, M. D. 1996. Reactive oxygen species and programmed cell death. Trends Biochem. Sci. 21:83–86.

    Google Scholar 

  37. Pani, G., Colavitti, R., Borrello, S., and Galeotti, T. 2000. Endogenous oxygen radicals modulate protein tyrosine phosphorylation and JNK-1 activation in lectin-stimulated thymocytes. Biochem. J. 347:173–181.

    Google Scholar 

  38. Kamata, H., and Hirata, H. 1999. Redox regulation of cellular signalling. Cell Signal. 11:1–14.

    Google Scholar 

  39. Guan, K. L., Deschenes, R. J., Qiu, H., and Dixon, J. E. 1991. Cloning and expression of a yeast protein tyrosine phosphatase. J. Biol. Chem. 266:12964–12970.

    Google Scholar 

  40. Sattler, M., Winkler, T., Verma, S., Byrne, C. H., Shrikhande, G., Salgia, R., and Griffin, J. D. 1999. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93:2928–2935.

    Google Scholar 

  41. Garle, M. J., Knight, A., Downing, A. T., Jassi, K. L., Clothier, R. H., and Fry, J. R. 2000. Stimulation of dichlorofluorescin oxidation by capsaicin and analogues in RAW 264 monocyte/macrophages: Lack of involvement of the vanilloid receptor. Biochem. Pharmacol. 59: 563–572.

    Google Scholar 

  42. Forstermann, U., and Kleinert, H. 1995. Nitric oxide synthase: Expression and expressional control of the three isoforms. Naunyn. Schmiedeberg. Arch. Pharmacol. 352:351–364.

    Google Scholar 

  43. Schulze-Osthoff, K., Los, M., and Baeuerle, P. A. 1995. Redox signalling by transcription factors NF-kappa B and AP-1 in lymphocytes. Biochem. Pharmacol. 50:735–741.

    Google Scholar 

  44. Ghosh, S., May, M. J., and Kopp, E. B. 1998. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225–260.

    Google Scholar 

  45. Marks-Konczalik, J., Chu, S. C., and Moss, J. 1998. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kappaB-binding sites. J. Biol. Chem. 273:22201–22208.

    Google Scholar 

  46. Furchgott, R. F. 1991. Endothelium-dependent relaxation, endothelium-derived relaxing factor and photorelaxation of blood vessels. Semin. Perinatol. 15:11–15.

    Google Scholar 

  47. Szallasi, A., and Blumberg, P. M. 1999. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51:159–212.

    Google Scholar 

  48. Caterina, M. J., and Julius, D. 2001. The vanilloid receptor: A molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24:487–517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanlou Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, S., Li, W., Tsubouchi, R. et al. Role of Vanilloid Receptors in the Capsaicin-Mediated Induction of iNOS in PC12 Cells. Neurochem Res 29, 687–693 (2004). https://doi.org/10.1023/B:NERE.0000018839.59457.5c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000018839.59457.5c

Navigation