Skip to main content
Log in

Protein Kinase C-Mediated Phosphorylation of Kvβ2 in Adult Rat Brain

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The phosphorylation of Kvβ2 was investigated by different protein kinases. Protein kinase A catalytic subunit (PKA-CS) yielded the greatest phosphorylation of recombinant Kvβ2 (rKvβ2), with limited phosphorylation by protein kinase C catalytic subunit (PKC-CS) and no detectable phosphorylation by casein kinase II (CKII). Protein kinase(s) from adult rat brain lysate phosphorylated both rKvβ2 and endogenous Kvβ. The PKA inhibitor, PKI 6-22, fully inhibited PKA-mediated phophorylation of rKvβ2 yet showed minimal inhibition of kinase activity present in rat brain. The inhibitor Gö 6983, that blocks PKCα, PKCβ, PKCγ, PKCδ and PKCζ activities, inhibited rKvβ2 phosphorylation by rat brain kinases, with no inhibition by Gö 6976 which blocks PKCα and PKCβΙ activities. Dose-response analysis of Gö 6983 inhibitory activity indicates that at least two PKC isozymes account for the kinase activity present in rat brain. Τhus, while PKA was the most active protein kinase to phosphorylate rKvβ2 in vitro, Kvβ2 phosphorylation in the rat brain is mainly mediated by PKC isozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sheng, M., Liao, Y. J., Jan, Y. N., and Jan, L. Y. 1993. Presynaptic A-current based on heteromultimeric K + channels detected in vivo. Nature 365:72-74.

    Google Scholar 

  2. Wilson, G. G., O 'Neill, C. A., Sivaprasadarao, A., Findlay, J. B., and Wray, D. 1994. Modulation by protein kinase A of a cloned rat brain potassium channel expressed in Xenopus oocytes. Pflugers. Arch. 428:186-193.

    Google Scholar 

  3. Heinemann, S., Rettig, J., Scott, V. E. S., Parcej, D. N., Lorra, C., Dolly, J., and Pongs, O. 1994. The inactivation behavior of voltage-gated K-channels may be determined by association of alpha-and beta-subunits. J. Physiol. 88:173-180.

    Google Scholar 

  4. Morales, M. J., Castellino, R. C., Crews, A. L., Rasmusson, R. L., and Strauss, H. C. 1995.A novel β subunit increases rate of inactivation of specific voltage-gated potassium channel α subunits. J. Biol. Chem. 270:6272-6277.

    Google Scholar 

  5. Rettig, J., Helnemann, S. H., Wunder, F., Lorra, C., Parcej, D. N., Dolly, J. O., and Pongs, O. 1994. Inactivation properties of voltage-gated K + channels altered by presence of beta-subunit. Nature 369:289-294.

    Google Scholar 

  6. Rhodes, K. J., Keilbaugh, S. A., Barrezueta, N. X., Lopez, K. L., and Trimmer, J. S. 1995. Association and Colocalization of K + ChannelαandβSubunit Polypeptides in Rat Brain. J. Neurosci. 15:5360-5371.

    Google Scholar 

  7. Coetzee, W. A., Amarillo, Y., Chiu, J., Chow, A., Lau, D., McCormack, T., Moreno, H., Nadal, M. S., Ozaita, A., Pountney, D., Saganich, M., Vega-Saenz, de. Miera. E., and Rudy, B. 1999. Molecular diversity of K + channels. Ann. N. Y. Acad. Sci. 30:233-85.

    Google Scholar 

  8. Lock, L. F., Gilbert, D. J., Street, V. A., Migeon, M. B., Jenkins, N. A., Copland, N. G., and Tempel, B. L. 1994. Voltage-gated potassium channel genes are clustered in paralogous regions of the mouse genome. Genomics 20:354-362.

    Google Scholar 

  9. McCormack, T., and McCormack, K. 1994. Shaker K + Channel β subunits belong to an NAD(P)H-Dependent oxidoreductase superfamily. Cell 79:1133-1135.

    Google Scholar 

  10. Pongs, O., Leicher, T., Berger, M., Roeper, J., Bähring, R., Wray, D., Giese, K. P., and Silva, A. J. 1999. Storm JF:Functional and molecular aspects of voltage-gated K + channel β subunits. Ann. N. Y. Acad. Sci. 30:344-355.

    Google Scholar 

  11. Heinemann, S. H., Rettig, J., Graack, H. R., and Pongs, O. 1996. Functional characterization of Kv channel β subunits from rat brain. J. Physiol. (Lond) 493(3):625-633.

    Google Scholar 

  12. Rhodes, K. J., Monaghan, M. M., Barrezueta, N. X., Nawoschik, S., Bekele-Arcuri, Z., Matos, M. F., Nakahira, K., Schechter, L. E., and Trimmer, J. S. 1996. Voltage-gated K + channel subunits:Expression and distribution of Kvβ1and Kvβ2in adult rat brain. J. Neurosci. 16:4846-4860.

    Google Scholar 

  13. Downen, M., Belkowski, S., Knowles, H., and Prystowsky, M. M. 1999. Developmental expression of voltage-gated potassium channel β subunits. Develop. Brain. Res. 117:71-80.

    Google Scholar 

  14. Lombardi, S. J., Truong, A., Spence, P., Rhodes, K. J., and Jones, P. G. 1998. Structure-activity relationships of the Kvβ1 inactivation domain and its putative receptor probed using peptide analogs of voltage-gated potassium channel α and β subunits. J. Biol. Chem. 273:30092-30096.

    Google Scholar 

  15. Nakahira, K., Shi, G., Rhodes, K. J., and Trimmer, J. S. 1996. Selective Interaction of Voltage-gated K + Channel β-Subunits with α-Subunits. J. Biol. Chem. 27:7084-7089.

    Google Scholar 

  16. Sewing, S., Roeper, J., and Pongs, O. 1996. Kvβ1 Subunit binding specific for shaker-related potassium channel a subunits. neuron 16:455-463.

    Google Scholar 

  17. Yu, W., Xu, J., and Li, M. 1996. NAB domain is essential for the subunit assembly of both α-α and α-β complexes of shaker-like potassium channels. Neuron 16:441-453.

    Google Scholar 

  18. Xu, J. and Li, M. 1997. Kvβ1 Inhibits the Kvβ1-mediated Inactivation of K + Channels in transfected mammalian cells. J. Biol. Chem. 272:11728-11735.

    Google Scholar 

  19. Xu, J., Yu, W., Wright, J. M., Raab, R. W., and Li, M. 1998. Distinct functional stoichiometry of potassium channel β subunits. Proc. Natl. Acad. Sci. USA 95:1846-1851.

    Google Scholar 

  20. Heinemann, S. H., Rettig, J., Wunder, F., and Pongs, O. 1995. Molecular and functional characterization of a rat brain Kvβ3 potassium channel subunit. FEBS. Lett. 377:383-389.

    Google Scholar 

  21. Uebele, V. N., England, S. K., Gallagher, D. J., Snyders, D. J., Bennett, P. B., and Tamkun, M. M. 1998. Distinct domains of the voltage-gated K + channel Kvβ1.3 β-subunit affect voltage-dependent gating. Am. J. Physiol. 274:1485-1495.

    Google Scholar 

  22. Dixon, J. E. and McKinnon, D. 1996. Potassium Channel mRNA Expression in prevertebral and paravertebral sympathetic neurons. Eur. J. Neurosci. 8:183-191.

    Google Scholar 

  23. Shamotienko, O. G., Parcej, D. N., and Dolly, J. O. 1997. Subunit Combinations Defined for K + Channel Kv1 subtypes in synaptic membranes from bovine brain. Biochemistry 36:18195-18201.

    Google Scholar 

  24. Beckh, S. and Pongs, O. 1990. Members of the RCK potassium channel family are differentially expressed in the rat nervous system. EMBO. J. 9:777-782.

    Google Scholar 

  25. Cohen, J. A., Arai, M., Lining, Prak. E., Brooks, S. A., Young, L. G., and Prystowsky, M. B. 1992. Characterization of a novel mRNA expressed by neurons in mature brain. J. Neurosci. Res. 31:273-284.

    Google Scholar 

  26. Perney, T. M., Marshall, J., Martin, K. A., Hockfield, S., and Kaczmarek, L. K. 1992. Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. J. Neurophysiol. 68:756-766.

    Google Scholar 

  27. Weiser, M., Vega-Saenz, de. Miera. E., Kentros, C., Moreno, H., Franzen, L., Hillman, D., Baker, H., and Rudy, B. 1994. Differential expression of Shaw-related K + channels in the rat central nervous system. J. Neurosci. 14:949-972.

    Google Scholar 

  28. Ivanina, T., Perets, T., Thornhill, W. B., Levin, G., Dascal, N., and Lotan, I. 1994. Phosphorylation by protein kinaseαof RCK1 K + channels expressed in xenopus oocytes. Biochemistry 33:8786-8792.

    Google Scholar 

  29. Matsushima, S. and Nakamura, S. 1994. Protein kinase C delta-and epsilon-subspecies in rat central nervous tissue; differential distribution and phorbol ester-induced redistribution in synaptosomes. Neurosci. Res. 19:339-343.

    Google Scholar 

  30. Covarrubias, M., Wei, A., Salko., L., and Vyas, T. B. 1994. Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate. Neuron 13:1403-1412.

    Google Scholar 

  31. Drain, P., Dubin, A. E., and Aldrich, R. W. 1994. Regulation of Shaker K + channel inactivation gating by the cAMP-dependent protein kinase. Neuron 12:1097-1109.

    Google Scholar 

  32. Gong, J., Xu, J., Bezanilla, M., van, Huizen. R., Derin, R., and Li, M. 1999. Differential stimulation of PKC phosphory lation of potassium channels by ZIP1 and ZIP 2. Science 285:1565-1569.

    Google Scholar 

  33. Huang, X. Y., Morielli, A. D., and Peralta, E. G. 1994. Molecular basis of cardiac potassium channel stimulation by protein kinase A. Proc. Natl. Acad. Sci. USA 91:624-628.

    Google Scholar 

  34. Jing, J., Peretz, T., Singer-Lahat, D., Chikvashvili, D., Thornhill, W. B., and Lotan, I. 1997. Inactivation ofαVolt age-dependent K + Channel byβ Subunit. J. Biol. Chem. 272:14021-14024.

    Google Scholar 

  35. Levy, M., Jing, J., Chikvashvili, D., Thornhill, W. B., and Lotan, I. 1998. Activation ofαmetabotropic glutamate receptor and protein kinase C reduce the extent of inactivation of the K + Channel Kv1.B1.1 via dephosphorylation of Kv1.1. J. Biol. Chem. 273:6495-6502.

    Google Scholar 

  36. Light, P. E., Allen, B. G., Walsh, M. P., and French, R. J. 1995. Regulation of adenosine triphosphate-sensitive potas sium channels from rabbit ventricular myocytes by protein kinase C and type 2A protein phosphatase. Biochemistry 34:7252-7257.

    Google Scholar 

  37. Martel, J., Dupuis, G., Deschenes, P., and Payet, M. D. 1998. The Sensitivity of the Human Kv1.3 (hKv1.3)Lym phocyte K+ Channel to Regulation by PKA and PKC is Partially Lost in HEK 293 Host Cells. J. Membr. Biol. 161:183-196.

    Google Scholar 

  38. Moreno, H., Kentros, C., Bueno, E., Weiser, M., Hernandez, A., Vega-Saenz, de. Miera. E., Ponce, A., Thornhill, W., and Rudy, B. 1995. Thalamocortical projections have a K + channel that is phosphorylated and modulated by cAMP-dependent protein kinase. J. Neurosci. 15:5486-5501.

    Google Scholar 

  39. Sobko, A., Peretz, A., and Attal, B. 1998. Constitutive activation of delayed-rectifier potassium channels by a Src fam ily tyrosine kinase in Schwann cells. EMBO. J. 17:4723-4734.

    Google Scholar 

  40. Kwak, Y. G., Hu, N. Wei., J, George., A. L. Jr., Grobaski, T. D., Tamkun, M. M., and Murray, K. T. 1999. Protein kinase A. phosphorylation alters Kvβ1.3 subunit-mediated inactivation of the Kv1.5 potassium channel. J. Biol. Chem. 274:13928-13932.

    Google Scholar 

  41. Li, Y., Ndubuka, C., and Rubin, C. S. 1996. A kinase anchor protein 75 targets regulatory (RII)subunits of cAMP-dependent protein kinase II to the cortical actin cyto skeleton in non-neuronal cells. J, Biol. Chem. 271:16862-16869.

    Google Scholar 

  42. Müller, K. M., Arndt, K. M., Bauer, K., and Plückthun, A. 1998. Tandem immobilized metalion affinity chromatography/immunoaffinity purification of Histagged proteins-evaluation of two anti-Histag monoclonal antibodies. Anal. Biochem. 259:54-61.

    Google Scholar 

  43. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

    Google Scholar 

  44. Arai, M. and Cohen, J. A. 1993. Characterization of the neuroimmune protein F5:localization to the dendrites and perikarya of mature neurons and the basal aspect of choroid plexus epithelial cells. J. Neurosci. Res. 36:305-314.

    Google Scholar 

  45. Bosma, M. M., Allen, M. L., Martin, T. M., and Tempel, B. L. 1993. PKA-dependent regulation of mKv1. 1, a mouse shaker-like potassium channel gene, when stably expressed in CHO cells. J. Neurosci. 13:5242-5250.

    Google Scholar 

  46. Jonas, E. A. and Kaczmarek, L. K. 1996. Regulation of potassium channels by protein kinases. Curr. Opin. Neurobiol. 6:318-323.

    Google Scholar 

  47. Levin, G., Chikvashvili, D., Singer-Lahat, D., Peretz, T., Thornhill, W. B., and Lotan, I. 1996. Phosphorylation of a K + channel α subunit modulates the inactivation conferred by a β subunit. J. Biol. Chem. 27:29321-29328.

    Google Scholar 

  48. Blobe, G. C., Stribling, S., Obeid, L. M., and Hannun, Y. A. 1996. Protein kinase C isozymes:Regulation and function. Cancer. Surveys. 27:213-248.

    Google Scholar 

  49. Mellor, H. and Parker, P. J. 1998. The extended protein kinase C superfamily. Biochem. J. 332:281-292.

    Google Scholar 

  50. Toker, A. 1998. Signalling through protein kinase C. Frontiers in Bioscinece 3:d1134-1147.

    Google Scholar 

  51. Tanaka, C. and Saito, N. 1992. Localization of subspeicies of protein kinase C in the mammalian central nervous system. Neurochem. Int. 21:499-512.

    Google Scholar 

  52. Jaken, S. 1996. Protein kinase C isozymes and substrates. Current Opinion Cell Biol. 8:168-173.

    Google Scholar 

  53. Battaini, F., Elkabes, S., Bergamaschi, S., Ladisa, C., Lucchi, L., De. Graan, P. N., Schuurman, T., Wetsel, W. C., Trabucchi, M., and Govoni, S. 1995. Protein kinase C activity, translocation, and conventional isoforms in aging rat brain. Neurobiol. Aging. 16:137-148.

    Google Scholar 

  54. Battaini, F., Pascale, A., paoletti, R., and Govoni, S. 1997. The role of ancoring protein RACK1 in PKC activation in the ageing rat brain. Trends Neurosci. 20:410-415.

    Google Scholar 

  55. Hunter, S. E., Seibenhener, M. L., and Wooten, M. W. 1995.A typical zeta-protein kinase C displays a unique developmental expression pattern in rat brain. Brain Res. Dev. Brain Res. 18:239-248.

    Google Scholar 

  56. Pascale, A., Govoni, S., and Battaini, F. 1998. Age-related alteration of PKC,a key enzyme in memory processes:Phys iological and pathological examples. Mol. Neurobiol. 16:49-62.

    Google Scholar 

  57. Reinhart, P. H. and Levitan, I. B. 1995. Kinase and phosphatase activities intimately associated with reconstituted calcium-dependent potassium channel. J. Neurosci. 15:4572-4579.

    Google Scholar 

  58. Douma, B. R., Van, der. Zee. E. A., and Luiten, P. G. 1998. Translocation of protein kinase C gamma occurs during the early phase of acquisition of food rewarded spatial learning. Behav. Neurosci. 112:496-501.

    Google Scholar 

  59. Son, H., Madelian, V. and Carpente, D. O. 1996. The translocation and involvement of protein kinase C in mossy ber CA3 long-term potentiation in hippocampus of the rat brain. Brain Res. 11:282-292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhang, J., Berkowski, S.M. et al. Protein Kinase C-Mediated Phosphorylation of Kvβ2 in Adult Rat Brain. Neurochem Res 29, 1879–1886 (2004). https://doi.org/10.1023/B:NERE.0000042215.92952.3d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000042215.92952.3d

Navigation