Skip to main content
Log in

Quantum Solution of Coordination Problems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a quantum solution to coordination problems that can be implemented with existing technologies. Using the properties of entangled states, this quantum mechanism allows participants to rapidly find suitable correlated choices as an alternative to conventional approaches relying on explicit communication, prior commitment or trusted third parties. Unlike prior proposals for quantum games our approach retains the same choices as in the classical game and instead utilizes quantum entanglement as an extra resource to aid the participants in their choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Adar and B. A. Huberman, A market for secrets. First Monday 6, 6-16 (2001).

    Google Scholar 

  2. R. J. Aumann, Subjectivity and correlation in randomized strategies. J. Math. Econ., 1, 67-96 (1974).

    Google Scholar 

  3. S. C. Benjamin and P. M. Hayden, Multiplayer quantum games. Phys. Rev. A, 64, 030301 (2001).

    Google Scholar 

  4. K. Binmore and L. Samuelson. Coordinated action in the electronic mail game. Games Econ. Behav. 35, 6-30 (2000).

    Google Scholar 

  5. C. Camerer, Behavioral Game Theory: Experiments on Strategic Interaction (Princeton University Press, Princeton, NJ, 2003).

    Google Scholar 

  6. K.-Y. Chen, Tad Hogg, and Raymond Beausoleil, A quantum treatment of public goods economics. Quant. Inform. Process. 1, 449-469 (2002). arxiv.org preprint quantph/ 0301013.

    Google Scholar 

  7. J. Du et al., Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88, 137902 (2002) arxiv.org preprint quant-ph/0104087.

    Google Scholar 

  8. J. Eisert, M. Wilkens, and M. Lewenstein, Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077-3080 (1999). arxiv.org preprint quant-ph/9806088.

    Google Scholar 

  9. D. Fudenberg and J. Tirole, Game Theory (MIT Press, Cambridge, MA, 2000).

    Google Scholar 

  10. J. van Huyck, R. Battalio, and F. Rankin, On the origin of convention: Evidence from coordination games. Econ. J. 107, 576-597 (1997).

    Google Scholar 

  11. P. G. Kwiat et al., Experimental verification of decoherence-free subspaces. Science 290, 498-501 (2000).

    Google Scholar 

  12. C. F. Lee and N. Johnson, Quantum game theory. arxiv.org preprint quant-ph/0207012, 2002.

  13. S. Lloyd, M. S. Shahriar, and P. R. Hemmer, Teleportation and the quantum internet. Technical report, MIT, 2004.

  14. D. A. Meyer, Quantum strategies. Phys. Rev. Lett. 82, 1052-1055 (1999). arxiv.org preprint quant-ph/9804010.

    Google Scholar 

  15. P. la Mura, Correlated equilibria of classical strategic games with quantum signals. arxiv.org preprint quant-ph/0309033, Sept. 2003.

  16. M. A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information. (Cambridge University Press, 2000).

  17. A. Rubinstein, The electronic mail game: Strategic behavior under almost common knowledge. Am. Econ. Rev., 79, 385-391 (1989).

    Google Scholar 

  18. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchett, W. M. Itano, D. J. Wineland, and C. Monroe. Experimental entanglement of four particles. Nature, 404: 256-259 (2000).

    Google Scholar 

  19. T. C. Schelling, The Strategy of Conflict (Oxford University Press, Oxford, 1960).

    Google Scholar 

  20. S. J. van Enk and R. Pike. Classical rules in quantum games. Phys. Rev. A 66: 024306 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huberman, B.A., Hogg, T. Quantum Solution of Coordination Problems. Quantum Information Processing 2, 421–432 (2003). https://doi.org/10.1023/B:QINP.0000042201.34328.61

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:QINP.0000042201.34328.61

Navigation