Skip to main content
Log in

Electronic Structure and Catalytic Properties of Transition Metal Nanoparticles: The Effect of Size Reduction

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Size reduction of metal particles results in the formation of nanoparticles having short-range order and metastable state.

Modeling of the nanoparticles can be obtained by various approaches. The major arrangement is the use of a model support on which metal nanoparticles can be created in a controlled way. Another approach is the use of amorphous alloy as precursor in which the ensemble of active sites (normally small metal nuclei embedded into amorphous matrix) is created.

The modeling will be illustrated through the paper using SiO2/Si(100) on which several transition metals will be deposited by pulsed laser deposition. Ultraviolet photoelectron spectroscopic technique as well as transmission electron microscopic technique will be utilized in characterization of the samples. CO chemisorption and CO oxidation as test reaction will be applied to show the connection between catalytic behavior and electronic properties or morphology of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Somorjai, Chemistry of Two Dimensions: Surfaces (Cornell University Press, Ithaca, New York, 1981); G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (John Wiley & Sons, Inc., New York, 1991).

    Google Scholar 

  2. J. Turkevich and G. Kirn, Science, 169 (1970) 873.

    Google Scholar 

  3. L. Guczi, Proc. 9th Int. Congress on Catalysis, Eds. M.J. Phillips M. Ternan (Chemical Institute of Canada, Ottawa, 1989, p.114).

    Google Scholar 

  4. M. Che and C.O. Bennett, Adv. Catal. 36 (1989) 55.

    Google Scholar 

  5. H. Sakurai and M. Haruta, Catal. Today 29 (1996) 361.

    Google Scholar 

  6. M. Haruta, Catal. Today 36 (1997) 153.

    Google Scholar 

  7. Y. Yuan, K. Asakura, H. Wan, K. Tsai and Y. Iwasawa, Chem. Lett., 755 1996).

  8. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Jenet and B. Delmon, J. Catal., 144 (1993) 175.

    Google Scholar 

  9. F.H. Ribeiro, A.E. von Wittenau, C.H. Bartholomew and G.A. Somorjai, Catal. Rev. Sci. Eng. 39 (1997) 49.

    Google Scholar 

  10. P.W. Jacobs, F.H. Ribeiro, G.A. Somorjai and S.J. Wind, Catal. Lett. 37 (1996) 131.

    Google Scholar 

  11. G. Petö, G. Molnár, G. Bogdányi and L. Guczi, Catal. Lett. 26 (1994) 383.

    Google Scholar 

  12. G. Bogdányi, Z. Zsoldos, G. Petö and L. Guczi, Surf. Sci. 306 (1994) L563.

    Google Scholar 

  13. Z. Pászti, G. Petö, Z.E. Horváth, A. Karacs and L. Guczi, Solid State Commun. 107 (1998) 329.

    Google Scholar 

  14. T. Beutel, Z. Zhang, W.M.H. Sachtler and H. Knözinger, J. Phys. Chem. 97 (1993) 3579.

    Google Scholar 

  15. M. Ichikawa, L. Rao, T. Ito and A. Fukuoka, Faraday Disc. Chem. Soc. 87 (1989) 232.

    Google Scholar 

  16. B.M. Choudary, K. Matusek, K. Lázár and L. Guczi, J. Chem. Soc. Chem. Commun. 592 (1988).

  17. L. Guczi and I. Kiricsi, Appl. Catal. A 186 (1999) 375.

    Google Scholar 

  18. I. Böszörményi, S. Dobos, K. Lázár, Z. Schay and L. Guczi, Surf. Sci. 156 (1985) 995.

    Google Scholar 

  19. K. Lázár, K. Matusek, J. Mink, S. Dobos, L. Guczi, A. Vizi-Orosz and L. Markó, J. Catal. 87 (1984) 163.

    Google Scholar 

  20. A. Beck, S. Dobos and L. Guczi, Inorg. Chem. 27 (1988) 3220.

    Google Scholar 

  21. L. Guczi, A. Beck, A. Horváth and D. Horváth, Topics Catal. 19 (2002) 157.

    Google Scholar 

  22. M. Boutonnet, J. Kizling, R. Touroude, G. Maire and P. Stenius, Catal. Lett. 9 (1991) 347.

    Google Scholar 

  23. R. Touroude, P. Girard, G. Maire, J. Kizling, P. Stenius and M. Boutonnet Kizling, Colloid Surf. 67 (1992) 9.

    Google Scholar 

  24. A.S. Eppler, G. Rupprechter, L. Guczi and G.A. Somorjai, J. Phys. Chem. B 101 (1997) 9973.

    Google Scholar 

  25. F.H. Ribeiro and G.A. Somorjai, Rec. Trav. Chim. Pays-Bas 113 (1994) 419.

    Google Scholar 

  26. P.L.J. Gunter, J.W. Niemantsverdriet, F.H. Ribeiro and G.A. Somorjai, Catal. Rev. Sci. Eng., 39 (1997) 77.

    Google Scholar 

  27. J.A. Rodriguez and W.D. Goodman, J. Phys. Chem. 95 (1991) 4196.

    Google Scholar 

  28. R. Sundararajan, G. Petö, E. Koltay and L. Guczi, Appl. Surf. Sci. 90 (1995) 165.

    Google Scholar 

  29. Z. Pászti, Z.E. Horváth, G. Petö, A. Karacs and L. Guczi, Appl. Surf. Sci. 109/110 (1997) 67. (b)Z. Pászti, G. Petö, Z.E. Horváth and A. Karacs, Appl. Surf. Sci. 168 (2000) 114.

    Google Scholar 

  30. Z. Pászti, G. Petö, Z.E. Horváth, A. Karacsö and L. Guczi, J. Phys. Chem. B 101 (1997) 2109.

    Google Scholar 

  31. Z. Pászti, G. Petö, Z.E. Horváth, O. Geszti, A. Karacs and L. Guczi, Appl. Phys. A 76 (2003) 577.

    Google Scholar 

  32. W.F. Egelhoff and G.G. Tibbets, Phys. Rev. B 19 (1979) 5028.

    Google Scholar 

  33. V. Vijayakrishnan and C.N.R. Rao, Surf. Sci. 255 (1991) L516.

    Google Scholar 

  34. G.K. Wertheim, S.B. DiCenzo and D.N.E. Buchanan, Phys. Rev. B 33 (1986) 5384.

    Google Scholar 

  35. A.R. Pennisi, E. Costanzo, G. Faraci, Y. Hwu and G. Margaritondo, Phys. Lett. A 169 (1992) 87.

    Google Scholar 

  36. M. DeCrescenzi, M. Diociaiuti, L. Lozzi, P. Picozzi and S. Santucci, Solid State Commun. 74 (1990) 115.

    Google Scholar 

  37. S. DiNardo, L. Lozzi, M. Passacantando, P. Picozzi, S. Santucci and M. DeCrescenzi, Surf. Sci. 307 (1994) 922.

    Google Scholar 

  38. V. Vijayakrishnan, A. Chainani, D.D. Sarma and C.N.R. Rao, J. Phys. Chem. 96 (1992) 879.

    Google Scholar 

  39. C.N.R. Rao, V. Vijayakrishnan, H.N. Aiyer, G.U. Kulkarni and G.N. Subbanna, J. Phys. Chem. 97 (1993) 11157.

    Google Scholar 

  40. H.N. Aiyer, V. Vijayakrishnan, G.N. Subbanna and C.N.R. Rao, Surf. Sci. 313 (1992) 392.

    Google Scholar 

  41. M. Gautier, L. Pham Van and J.P. Durand, Europhys. Lett. 18 (1992) 175.

    Google Scholar 

  42. G.K. Wertheim and S.B. DiCenzo, Phys. Rev. B 37 (1985) 844.

    Google Scholar 

  43. G.K. Wertheim, S.B. DiCenzo and S.E. Youngquist, Phys. Rev. Lett. 51 (1983) 2310.

    Google Scholar 

  44. M. Haruta, N. Yamada, T. Kobayashi and S.J. Iijima, J. Catal. 115 (1989) 301.

    Google Scholar 

  45. A. Ueda, T. Oshima and M. Haruta, Appl. Catal. B 12 (1997) 81.

    Google Scholar 

  46. D. Andreeva, T. Tabakova, V. Idakiev, P. Christov and R. Giovanoli, Appl. Catal. A 169 (1998) 9.

    Google Scholar 

  47. H. Sakurai and M. Haruta, Catal. Today 29 (1996) 361.

    Google Scholar 

  48. M. Haruta, A. Ueda, S. Tsubota and R.M. Torres Sanches, Catal. Today 29 (1996) 443.

    Google Scholar 

  49. L. Guczi, D. Horáth, Z. Pászti, L. Tóth, Z.E. Horváth, A. Karacs and G. Petö, J.Phys. Chem B 104 (2000) 3183.

    Google Scholar 

  50. G. Petö, G.L. Molnár, Z. Pászti, O. Geszti, A. Beck and L. Guczi, Mater Sci. Eng. C19(2002) 95.

    Google Scholar 

  51. L. Guczi, G. Petö, A. Beck, K. Frey, O. Geszti, G. Molnár and Cs. Daróczi, J. Am. Chem. Soc., 125 (2003) 4332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guczi, L., Petö, G., Beck, A. et al. Electronic Structure and Catalytic Properties of Transition Metal Nanoparticles: The Effect of Size Reduction. Topics in Catalysis 29, 129–138 (2004). https://doi.org/10.1023/B:TOCA.0000029795.41364.56

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000029795.41364.56

Navigation