Skip to main content
Log in

Photoresponsive cAMP signal transduction in cyanobacteria

  • PPS
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The molecular mechanism of cAMP-mediated signal transduction from light reception to the physiological response via regulation of gene expression in cyanobacteria is described based on our recent works. Cyanobacteria are known as the organisms that acquired oxygen-evolving, higher plant type photosynthesis. We have found that the cellular cAMP level in the filamentous cyanobacteria Anabaena was oppositely regulated by red and far-red light, i.e., decreasing and increasing, respectively, suggesting that a phytochrome-like red/far-red photoreversible pigment regulates the activity of a certain adenylate cyclase. On the other hand, in the unicellular cyanobacterium Synechocystis cellular cAMP content was increased by blue light irradiation, which led to stimulation of cell motility. The cAMP signaling pathway is known to play an important role in the regulation of various biological activities by altering enzyme activities or controlling gene expression levels in both prokaryotes and eukaryotes. We have isolated genes for adenylate cyclases and cAMP receptor proteins and characterized their molecular properties. Disruption of these genes resulted in the loss of cell motility. It is concluded that the light signal was transmitted by cAMP signal cascade in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Watanabe, in CRC Handbook of Organic Photochemistry and Photobiology, ed. P. S. Horspool and P. S. Song, CRC Press, Boca Raton, FL, 1995.

  2. C. Fankhauser, J. Chory, Light control of plant development, Annu. Rev. Cell Dev. Biol., 1997, 13, 203–229.

    Article  CAS  PubMed  Google Scholar 

  3. J. M. Christie, W. R. Briggs, Blue light sensing in higher plants, J. Biol. Chem., 2001, 276, 11457–11460.

    Article  CAS  PubMed  Google Scholar 

  4. C. Lin, Blue light receptors and signal transduction, Plant Cell, 2002, 14Suppl, S207–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C. W. Mullineaux, How do cyanobacteria sense and respond to light?, Mol. Microbiol., 2001, 41, 965–971.

    Article  CAS  PubMed  Google Scholar 

  6. J. Hughes, T. Lamparter, F. Mittmann, E. Hartmann, W. Gärtner, A. Wilde, T. Borner, A prokaryotic phytochrome, Nature, 1997, 386, 663.

    Article  CAS  PubMed  Google Scholar 

  7. K. C. Yeh, S. H. Wu, J. T. Murphy, J. C. Lagarias, A cyanobacterial phytochrome two-component light sensory system, Science, 1997, 277, 1505–8.

    Article  CAS  PubMed  Google Scholar 

  8. D. M. Kehoe, A. R. Grossman, Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors, Science, 1996, 273, 1409–1412.

    Article  CAS  PubMed  Google Scholar 

  9. M. Ohmori, K. Ohmori, K. Hasunuma, Rapid change in cyclic 3′,5′-AMP concentration triggered by a light-off or light-on signal in cyanobacteria, Arch. Microbiol., 1988, 150, 203–204.

    Article  Google Scholar 

  10. P. Cohen, Protein phosphorylation and the control of glycogen metabolism in skeletal muscle, Philos. Trans. R. Soc. London, Ser. B, 1983, 302, 13–25.

    Article  CAS  PubMed  Google Scholar 

  11. M. R. Montminy, L. M. Bilezikjian, Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene, Nature, 1987, 328, 175–178.

    Article  CAS  PubMed  Google Scholar 

  12. S. A. Siegelbaum, J. S. Camardo, E. R. Kandel, Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones, Nature, 1982, 299, 413–417.

    Article  CAS  PubMed  Google Scholar 

  13. J. L. Botsford, J. G. Harman, Cyclic AMP in prokaryotes, Microbiol. Rev., 1992, 56, 100–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. J. Cann, Signalling through cyclic nucleotide monophospahtes in cyanobacteria, New Phytol., 2004, 159, 289–293.

    Google Scholar 

  15. R. Taussig, A. G. Gilman, Mammalian membrane-bound adenylyl cyclases, J. Biol. Chem., 1995, 270, 1–4.

    Article  CAS  PubMed  Google Scholar 

  16. J. Kawabe, G. Iwami, T. Ebina, S. Ohno, T. Katada, Y. Ueda, C. J. Homcy, Y. Ishikawa, Differential activation of adenylyl cyclase by protein kinase C isoenzymes, J. Biol. Chem., 1994, 269, 16554–16558.

    Article  CAS  PubMed  Google Scholar 

  17. G. Iwami, J. Kawabe, T. Ebina, P. J. Cannon, C. J. Homcy, Y. Ishikawa, Regulation of adenylyl cyclase by protein kinase A, J. Biol. Chem., 1995, 270, 12481–12484.

    Article  CAS  PubMed  Google Scholar 

  18. D. Broek, N. Samiy, O. Fasano, A. Fujiyama, F. Tamanoi, J. Northup, M. Wigler, Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins, Cell, 1985, 41, 763–769.

    Article  CAS  PubMed  Google Scholar 

  19. T. Toda, I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto, M. Wigler, In yeast, RAS proteins are controlling elements of adenylate cyclase, Cell, 1985, 40, 27–36.

    Article  CAS  PubMed  Google Scholar 

  20. P. J. Bottomley, W. D. Stewart, ATP pools and transients in the blue-green alga Anabaena cylindrica, Arch. Microbiol., 1976, 108, 249–258.

    Article  CAS  PubMed  Google Scholar 

  21. G. Ruyters, N. Grotjohann, W. Kowallik, Phytochrome in Dunaliella, Chlorella and other green algae, Biochem. Physiol. Pflanzen, 1991, 187, 97–103.

    Article  CAS  Google Scholar 

  22. A. L. Mancinelli, in Photomorphogenesis in Plants, ed. R. E. Kendrick and G. H. M. Kronenberg, Kluwer, Dordrecht, 1994, pp. 211–269.

  23. K. Terauchi, M. Ohmori, Blue light stimulates cyanobacterial motility via a cAMP signal transduction system, Mol. Microbiol., 2004, 51, 567–577.

    Article  CAS  PubMed  Google Scholar 

  24. M. Ohmori, K. Terauchi, S. Okamoto, M. Watanabe, Regulation of cAMP-mediated photosignaling by a phytochrome in the cyanobacterium Anabaena cylindrica, Photochem. Photobiol., 2002, 75, 675–679.

    Article  CAS  PubMed  Google Scholar 

  25. A. R. Cashmore, J. A. Jarillo, Y. J. Wu, D. Liu, Cryptochromes: blue light receptors for plants and animals, Science, 1999, 284, 760–765.

    Article  CAS  PubMed  Google Scholar 

  26. W. R. Briggs, C. F. Beck, A. R. Cashmore, J. M. Christie, J. Hughes, J. A. Jarillo, T. Kagawa, H. Kanegae, E. Liscum, A. Nagatani, K. Okada, M. Salomon, W. Rüdiger, T. Sakai, M. Takano, M. Wada, J. C. Watson, The phototropin family of photoreceptors, Plant Cell, 2001, 13, 993-937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Salomon, J. M. Christie, E. Knieb, U. Lempert, W. R. Briggs, Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin, Biochemistry, 2000, 39, 9401–9410.

    Article  CAS  PubMed  Google Scholar 

  28. W. Schmidt, J. Hart, P. Filner, K. L. Poff, Specific inhibition of phototropism in corn seedlings, Plant Physiol., 1977, 60, 736–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R. D. Vierstra, K. L. Poff, Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling, Plant Physiol., 1981, 67, 1011–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, K. Yoshida, M. Sugai, T. Takahashi, T. Hori, M. Watanabe, A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis, Nature, 2002, 415, 1047–1051.

    Article  CAS  PubMed  Google Scholar 

  31. S. Braatsch, M. Gomelsky, S. Kuphal, G. Klug, A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides, Mol. Microbiol., 2002, 45, 827–836.

    Article  CAS  PubMed  Google Scholar 

  32. S. Masuda, C. E. Bauer, AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides, Cell, 2002, 110, 613–623.

    Article  CAS  PubMed  Google Scholar 

  33. T. Kaneko, S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda, S. Tabata, Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions, DNA Res., 1996, 3, 109–136.

    Article  CAS  PubMed  Google Scholar 

  34. T. Kaneko, Y. Nakamura, C. P. Wolk, T. Kuritz, S. Sasamoto, A. Watanabe, M. Iriguchi, A. Ishikawa, K. Kawashima, T. Kimura, Y. Kishida, M. Kohara, M. Matsumoto, A. Matsuno, A. Muraki, N. Nakazaki, S. Shimpo, M. Sugimoto, M. Takazawa, M. Yamada, M. Yasuda, S. Tabata, Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, DNA Res., 2001, 8, 205–213; 227–253.

    Article  CAS  PubMed  Google Scholar 

  35. L. Aravind, C. P. Ponting, The GAF domain: an evolutionary link between diverse phototransducing proteins, Trends Biochem. Sci., 1997, 22, 458–459.

    Article  CAS  PubMed  Google Scholar 

  36. R. D. Vierstra, S. J. Davis, Bacteriophytochromes: new tools for understanding phytochrome signal transduction, Semin. Cell Dev. Biol., 2000, 11, 511–521.

    Article  CAS  PubMed  Google Scholar 

  37. S. Yoshihara, F. Suzuki, H. Fujita, X. X. Geng, M. Ikeuchi, Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 2000, 41, 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  38. O. Schmitz, M. Katayama, S. B. Williams, T. Kondo, S. S. Golden, CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock, Science, 2000, 289, 765–768.

    Article  CAS  PubMed  Google Scholar 

  39. B. L. Taylor, I. B. Zhulin, PAS domains: internal sensors of oxygen, redox potential, and light, Microbiol. Mol. Biol. Rev., 1999, 63, 479–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Crosson, K. Moffat, Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction, Proc. Natl. Acad. Sci. USA, 2001, 98, 2995–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Danchin, Phylogeny of adenylyl cyclases, Adv. Second Messenger Phosphoprotein Res., 1993, 27, 109–162.

    CAS  PubMed  Google Scholar 

  42. M. Katayama, Y. Wada, M. Ohmori, Molecular cloning of the cyanobacterial adenylate cyclase gene from the filamentous cyanobacterium Anabaena cylindrica, J. Bacteriol., 1995, 177, 5197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Katayama, M. Ohmori, Isolation and characterization of multiple adenylate cyclase genes from the cyanobacterium Anabaena sp. strain PCC 7120, J. Bacteriol., 1997, 179, 3588–3593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. K. Yashiro, T. Sakamoto, M. Ohmori, Molecular characterization of an adenylate cyclase gene of the cyanobacterium Spirulina platensis, Plant Mol. Biol., 1996, 31, 175–181.

    Article  CAS  PubMed  Google Scholar 

  45. K. Terauchi, M. Ohmori, An adenylate cyclase, Cya1, regulates cell motility in the cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 1999, 40, 248–251.

    Article  CAS  PubMed  Google Scholar 

  46. M. Kasahara, K. Yashiro, T. Sakamoto, M. Ohmori, The Spirulina platensis adenylate cyclase gene, cyaC, encodes a novel signal transduction protein, Plant Cell Physiol, 1997, 38, 828–836.

    Article  CAS  PubMed  Google Scholar 

  47. M. Kasahara, T. Unno, K. Yashiro, M. Ohmori, CyaG, a novel cyanobacterial adenylyl cyclase and a possible ancestor of mammalian guanylyl cyclases, J. Biol. Chem., 2001, 276, 10564–10569.

    Article  CAS  PubMed  Google Scholar 

  48. O. Gascuel, A. Danchin, Protein export in prokaryotes and eukaryotes: indications of a difference in the mechanism of exportation, J. Mol. Evol., 1986, 24, 130–142.

    Article  CAS  PubMed  Google Scholar 

  49. G. S. Pitt, N. Milona, J. Borleis, K. C. Lin, R. R. Reed, P. N. Devreotes, Structurally distinct and stage-specific adenylyl cyclase genes play different roles in Dictyostelium development, Cell, 1992, 69, 305–315.

    Article  CAS  PubMed  Google Scholar 

  50. E. Pays, P. Tebabi, A. Pays, H. Coquelet, P. Revelard, D. Salmon, M. Steinert, The genes and transcripts of an antigen gene expression site from T. brucei, Cell, 1989, 57, 835–845.

    Article  CAS  PubMed  Google Scholar 

  51. M. A. Sanchez, D. Zeoli, E. M. Klamo, M. P. Kavanaugh, S. M. Landfear, A family of putative receptor-adenylate cyclases from Leishmania donovani, J. Biol. Chem., 1995, 270, 17551–17558.

    Article  CAS  PubMed  Google Scholar 

  52. T. Tada, H. Sekimoto, M. Ohmori, Biochemical characterization of an adenylate cyclase, CyaB1, in the cyanobacterium Anabaena sp. PCC7120, J. Plant Res., 2001, 114, 387–394.

    Article  CAS  Google Scholar 

  53. L. M. McAllister-Lucas, T. L. Haik, J. L. Colbran, W. K. Sonnenburg, D. Seger, I. V. Turko, J. A. Beavo, S. H. Francis, J. D. Corbin, An essential aspartic acid at each of two allosteric cGMP-binding sites of a cGMP-specific phosphodiesterase, J. Biol. Chem., 1995, 270, 30671–30679.

    Article  CAS  PubMed  Google Scholar 

  54. M. Ohmori, K. Hasunuma, K. Furukawa, GTP-binding proteins in a cyanobacterium Anabaena cylindrica, Biochem. Biophys. Res. Commun., 1988, 151, 215–221.

    Article  CAS  PubMed  Google Scholar 

  55. T. Kanacher, A. Schultz, J. U. Linder, J. E. Schultz, A GAF-domain-regulated adenylyl cyclase from Anabaena is a self-activating cAMP switch, Embo J., 2002, 21, 3672–3680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. J. B. Stock, A. J. Ninfa, A. M. Stock, Protein phosphorylation and regulation of adaptive responses in bacteria, Microbiol. Rev., 1989, 53, 450–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. M. Kasahara, M. Ohmori, Activation of a cyanobacterial adenylate cyclase, CyaC, by autophosphorylation and a subsequent phosphotransfer reaction, J. Biol. Chem., 1999, 274, 15167–15172.

    Article  CAS  PubMed  Google Scholar 

  58. J. M. Stone, M. A. Collinge, R. D. Smith, M. A. Horn, J. C. Walker, Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase, Science, 1994, 266, 793–795.

    Article  CAS  PubMed  Google Scholar 

  59. Z. Zhouand, S. J. Elledge, DUN1 encodes a protein kinase that controls the DNA damage response in yeast, Cell, 1993, 75, 1119–1127.

    Article  Google Scholar 

  60. Y. Chen, M. J. Cann, T. N. Litvin, V. Iourgenko, M. L. Sinclair, L. R. Levin, J. Buck, Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor, Science, 2000, 289, 625–628.

    Article  CAS  PubMed  Google Scholar 

  61. K. Ogata, H. Umeyama, An automatic homology modeling method consisting of database searches and simulated annealing, J. Mol. Graphics Modell., 2000, 18, 258–272.

    Article  CAS  Google Scholar 

  62. C. Chang, S. F. Kwok, A. B. Bleecker, E. M. Meyerowitz, Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators, Science, 1993, 262, 539–544.

    Article  CAS  PubMed  Google Scholar 

  63. I. T. Weberand, T. A. Steitz, Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution, J. Mol. Biol., 1987, 198, 311–326.

    Article  Google Scholar 

  64. S. C. Schultz, G. C. Shields, T. A. Steitz, Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees, Science, 1991, 253, 1001–1007.

    Article  CAS  PubMed  Google Scholar 

  65. I. T. Weber, T. A. Steitz, J. Bubis, S. S. Taylor, Predicted structures of cAMP binding domains of type I and II regulatory subunits of cAMP-dependent protein kinase, Biochemistry, 1987, 26, 343–351.

    Article  CAS  PubMed  Google Scholar 

  66. S. S. Taylor, J. Bubis, J. Toner-Webb, L. D. Saraswat, E. A. First, J. A. Buechler, D. R. Knighton, J. Sowadski, cAMP-dependent protein kinase: prototype for a family of enzymes, FASEB J., 1988, 2, 2677–2685.

    Article  CAS  PubMed  Google Scholar 

  67. S. S. Taylor, J. A. Buechler, W. Yonemoto, cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes, Annu. Rev. Biochem., 1990, 59, 971–1005.

    Article  CAS  PubMed  Google Scholar 

  68. A. Kolb, S. Busby, H. Buc, S. Garges, S. Adhya, Transcriptional regulation by cAMP and its receptor protein, Annu. Rev. Biochem., 1993, 62, 749–795.

    Article  CAS  PubMed  Google Scholar 

  69. K. Moriand, H. Aiba, Evidence for negative control of cya transcription by cAMP and cAMP receptor protein in intact Escherichia coli cells, J. Biol. Chem., 1985, 260, 14838–14843.

    Article  Google Scholar 

  70. A. Hanamura, H. Aiba, Molecular mechanism of negative autoregulation of Escherichia coli crp gene, Nucleic Acids Res., 1991, 19, 4413–4419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. P. Valentin-Hansen, L. Sogaard-Andersen, H. Pedersen, A flexible partnership: the CytR anti-activator and the cAMP-CRP activator protein, comrades in transcription control, Mol. Microbiol., 1996, 20, 461–466.

    Article  CAS  PubMed  Google Scholar 

  72. T. Kaneko, S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda, S. Tabata, Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement), DNA Res., 1996, 3, 185–209.

    Article  CAS  PubMed  Google Scholar 

  73. CyanoBase, http://www.kazusa.or.jp/cyano/cyano.html.

  74. M. C. Vaney, G. L. Gilliland, J. G. Harman, A. Peterkofsky, I. T. Weber, Crystal structure of a cAMP-independent form of catabolite gene activator protein with adenosine substituted in one of two cAMP-binding sites, Biochemistry, 1989, 28, 4568–4574.

    Article  CAS  PubMed  Google Scholar 

  75. H. Yoshimura, S. Yanagisawa, M. Kanehisa, M. Ohmori, Screening for the target gene of cyanobacterial cAMP receptor protein SYCRP1, Mol. Microbiol., 2002, 43, 843–853. http://www.genome.ad.jp/kegg/expression.

    Article  CAS  PubMed  Google Scholar 

  76. A. Filloux, G. Michel, M. Bally, GSP-dependent protein secretion in gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa, FEMS Microbiol. Rev., 1998, 22, 177–198.

    Article  CAS  PubMed  Google Scholar 

  77. D. Walland, D. Kaiser, Type IV pili and cell motility, Mol. Microbiol., 1999, 32, 1–10.

    Article  Google Scholar 

  78. S. Yoshihara, X. Geng, S. Okamoto, K. Yura, T. Murata, M. Go, M. Ohmori, M. Ikeuchi, Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 2001, 42, 63–73.

    Article  CAS  PubMed  Google Scholar 

  79. H. Yoshimura, S. Yoshihara, S. Okamoto, M. Ikeuchi, M. Ohmori, A cAMP receptor protein, SYCRP1, is responsible for the cell motility of Synechocystis sp. PCC 6803, Plant Cell Physiol., 2002, 43, 460–463.

    Article  CAS  PubMed  Google Scholar 

  80. B. Diehn, M. E. Feinleib, W. Haupt, E. Hildebrand, F. Lenci, W. Nultch, Terminology of behavioral response of motile microorganisms, Photochem. Photobiol., 1979, 26, 559–560.

    Article  Google Scholar 

  81. D. P. Häder, Photosensory behavior in procaryotes, Microbiol. Rev., 1987, 51, 1–21.

    Article  PubMed  PubMed Central  Google Scholar 

  82. K. Ohmori, M. Hirose, M. Ohmori, function of cAMP as a mat-forming factor in the cyanobacterium Spirulina platensis, Plant and Cell Physiol., 1992, 33, 21–25.

    CAS  Google Scholar 

  83. E. Hoiczyk, Gliding motility in cyanobacterial: observations and possible explanations, Arch. Microbiol., 2000, 174, 11–17.

    Article  CAS  PubMed  Google Scholar 

  84. B. Brahamsha, An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus, Proc. Natl. Acad. Sci. USA, 1996, 93, 6504–6509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. R. Y. Stanier, R. Kunisawa, M. Mendel, B. G. Cohen, Purification and properties of unicellular blue-green algae (order Chroococcales), Bacteriological. Rev., 1971, 35, 171–205.

    Article  CAS  Google Scholar 

  86. D. Bhaya, N. Watanabe, T. Ogawa, A. R. Grossman, The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC 6803, Proc. Natl. Acad. Sci. USA, 1999, 96, 3188–3193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. D. Bhaya, N. R. Bianco, D. Bryant, A. Grossman, Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803, Mol. Microbiol., 2000, 37, 941–951.

    Article  CAS  PubMed  Google Scholar 

  88. S. Okamoto, M. Ohmori, The cyanobacterial PilT protein responsible for cell motility and transformation hydrolyzes ATP, Plant Cell Physiol., 2002, 43, 1127–1136.

    Article  CAS  PubMed  Google Scholar 

  89. K. Ohmori, M. Hirose, M. Ohmori, An increase in the intracellular concentration of cAMP triggers formation of an algal mat by the cyanobacterium Spirulina platensis, Plant Cell Physiol., 1993, 34, 169–171.

    CAS  Google Scholar 

  90. J. S. Choi, Y. H. Chung, Y. J. Moon, C. Kim, M. Watanabe, P. S. Song, C. O. Joe, L. Bogorad, Y. M. Park, Photomovement of the gliding cyanobacterium Synechocystis sp. PCC 6803, Photochem. Photobiol., 1999, 70, 95–102.

    Article  CAS  PubMed  Google Scholar 

  91. A. Wilde, B. Fiedler, T. Borner, The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light, Mol. Microbiol., 2002, 44, 981–988.

    Article  CAS  PubMed  Google Scholar 

  92. W. O. Ng, A. R. Grossman, D. Bhaya, Multiple light inputs control phototaxis in Synechocystis sp. strain PCC6803, J. Bacteriol., 2003, 185, 1599–1607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. R. W. Castenholz, in The Biology of Cyanobacteria ed. N. G. Carr and B. A. Whitton, University of California Press, Los Angeles, 1982, pp. 413–439.

  94. T. Matsunaga, K.-I. Iwagamai, Y. Takada, N. Fukunaga, Na+-coupled energetics of a psychrotrophic bacterium isolated from lake Vanda, Antarctica, Microb. Environ., 1999, 14, 139–149.

    Article  Google Scholar 

  95. T. Sakamoto, N. Murata, M. Ohmori, The concentration of cAMP and adenylate-cyclase activity in cyanobacteria, Plant Cell Physiol., 1991, 32, 581–584.

    Article  CAS  Google Scholar 

  96. A. Abeliovich, J. Gan, Site of Ca2+ action in triggering motility in the cyanobacterium Spirulina subsalsa, Cell Motil., 1982, 2, 393–403.

    Article  CAS  Google Scholar 

  97. T. Ogawa, G. Terui, Studies on the growth of Spirulina platensis, J. Ferment. Technol., 1970, 48, 361–367.

    Google Scholar 

  98. E. E. Hood, S. Armour, J. D. Ownby, A. K. Handa, R. A. Bressan, Effect of nitrogen starvation on the level of adenosine 3′,5′-monophosphate in Anabaena variabilis, Biochim. Biophys. Acta, 1979, 588, 193–200.

    Article  CAS  PubMed  Google Scholar 

  99. M. Katayama, M. Ohmori, Expression of adenylate cyclase gene of Anabeana cylindrica in the cyanobacterium Anabaena sp. strain PCC 7120, Plant Cell Physiol., 1998, 39, 786–789.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmori, M., Okamoto, S. Photoresponsive cAMP signal transduction in cyanobacteria. Photochem Photobiol Sci 3, 503–511 (2004). https://doi.org/10.1039/b401623h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b401623h

Navigation