Skip to main content
Log in

A study on the photodynamic properties of chlorophyll derivatives using human hepatocellular carcinoma cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is an alternative anticancer treatment in which direct tumor-cell killing results from selective accumulation of photosensitizers in the tumor sites and phototoxicity occurs when light-activated photosensitizers transfer the energy to oxygen nearby to produce singlet oxygen. The objective of this study was to investigate the effects of PDT using chlorophyll derivatives such as pheophytin a (phe a), pheophytin b (phe b), pheophorbide a (pho a) and pheophorbide b (pho b) as the photosensitizers, and the 660 nm light-emitting diodes (LEDs) irradiation on human hepatocellular carcinoma cells (HuH-7). The drug concentration-dependent inhibition of HuH-7 cell viability was studied under LEDs irradiation (10 mW cm−2) at radiant exposure of 5.1 and 10.2 J cm−2 by MTT assay. Significant inhibition of the survival of HuH-7 cells (<10%) was observed when an irradiation dose of 10.2 J cm−2 combined with the concentration of 0.5 μg ml−1 of phe a, 0.125 μg ml−1 of pho a, 0.25 μg ml−1 of phe b, and 0.125 μg ml−1 of pho b were applied. The results from Annexin V—propidium iodide staining revealed that phe a, phe b, pho a and pho b could induce cell death in HuH-7 cells predominantly via a necrotic process. The results from immunoblot analyses exhibited that chlorophyll derivative-mediated PDT initiated cytochrome c release, caspase-9 and caspase-3 activation, followed by poly ADP-ribose polymerase (PARP) cleavage. Thus, apoptosis also occurred in HuH-7 cells after PDT treatment, and the execution of the apoptotic process may be initiated from the loss of mitochondrial function. Our findings demonstrate that both apoptosis and necrosis can be induced in HuH-7 cells after PDT using phe a, phe b, pho a and pho b and LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. H. McKillop, D. M. Moran, X. Jin, L. G. Koniaris, Molecular pathogenesis of hepatocellular carcinoma, J. Surg. Res., 2006, 136, 125–135.

    Article  CAS  Google Scholar 

  2. H. E. Blum, Treatment of hepatocellular carcinoma, Best Pract. Res. Clin. Gastroenterol., 2005, 19, 129–145.

    Article  CAS  Google Scholar 

  3. D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  Google Scholar 

  4. T. S. Mang, Lasers and light sources for PDT: past, present and future, Photodiagn. Photodyn. Ther., 2004, 1, 43–48.

    Article  Google Scholar 

  5. M. Otake, M. Nishiwaki, Y. Kobayashi, S. Baba, E. Kohno, T. Kawasaki, Y. Fujise, H. Nakamura, Selective accumulation of ALA-induced PpIX and photodynamic effect in chemically induced hepatocellular carcinoma, Br. J. Cancer, 2003, 89, 730–736.

    Article  CAS  Google Scholar 

  6. C. M. N. Yow, C. K. Wong, Z. Huang, R. J. Ho, Study of the efficacy and mechanism of ALA-mediated photodynamic therapy on human hepatocellular carcinoma cell, Liver Int., 2007, 27, 201–207.

    Article  CAS  Google Scholar 

  7. V. Vonarx-Coinsman, M.-T. Foultier, L. X. de Brito, L. Morlet, A. Gouyette, T. Patrice, HepG2 human hepatocarcinoma cells: an experimental model for photosensitization by endogenous porphyrins, J. Photochem. Photobiol., 1995, 30, 201–208.

    Article  CAS  Google Scholar 

  8. N. G. Egger, J. A. Schoenecker, Jr., W. K. Gourley, M. Motamedi, K. E. Anderson, S. A. Weinman, Photosensitization of experimental hepatocellular carcinoma with protoporhyrin synthesized from administered d-aminolevulinic acid: studies with cultured cells and implanted tumors, J. Hepatol., 1997, 26, 913–920.

    Article  CAS  Google Scholar 

  9. J. Nakamura, H. Kajiwara, Photodynamic therapy using mono-l-aspartyl chlorin e6 for rabbit experimental hepatoma, J. Hepatobil. Pancreat. Surg., 1999, 6, 312–319.

    Article  CAS  Google Scholar 

  10. M. Date, K. Fukuchi, Y. Namiki, A. Okumura, S. Morita, H. Takahashi, K. Ohura, Therapeutic effect of photodynamic therapy using PAD-S31 and diode laser on human liver cancer cells, Liver Int., 2004, 24, 142–148.

    Article  CAS  Google Scholar 

  11. J. C. Lai, P.-C. Lo, D. K. P. Ng, W.-H. Ko, S. C. H. Leung, K.-P. Fung, W.-P. Fong, BAM-SiPc, a novel agent for photodynamic therapy, induces apoptosis in human hepatocarcinoma HepG2 by a direct mitochondrial action, Cancer Biol. Ther., 2006, 5, 413–418.

    Article  CAS  Google Scholar 

  12. C.-Y. Hsu, C.-M. Yang, C.-M. Chen, P.-Y. Chao, S.-P. Hu, Effects of chlorophyll-related compounds on hydrogen peroxide induced DNA damage within human lymphocytes, J. Agric. Food Chem., 2005, 53, 2746–2750.

    Article  CAS  Google Scholar 

  13. D.-Y. Xu, Research and development of photodynamic therapy photosensitizers in China, Photodiagn. Photodyn Ther., 2007, 4, 13–25.

    Article  CAS  Google Scholar 

  14. C.-M. Yang, K.-W. Chang, M.-H. Yin, H.-M. Huang, Methods for the determination of the chlorophylls and their derivatives, Taiwania, 1998, 43, 116–122.

    Google Scholar 

  15. S. M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri, E. S. Alnemri, Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization, Mol. Cell, 1998, 1, 949–957.

    Article  CAS  Google Scholar 

  16. H. Zou, R. Yang, J. Hao, J. Wang, C. Sun, S. W. Fesik, J. C. Wu, K. J. Tomaselli, R. C. Armstrong, Regulation of the Apaf-1/caspase-9 apoptosom by caspase-3 and XIAP, J. Biol. Chem., 278, 8091–8998.

  17. M. R. Detty, S. L. Gibson, S. J. Wagner, Current clinical and preclinical photosensitizers for use in photodynamic therapy, J. Med. Chem., 2004, 47, 3897–3915.

    Article  CAS  Google Scholar 

  18. W.-Y. Lee, D.-S. Lim, S.-H. Ko, Y.-J. Park, K.-S. Ryu, M.-Y. Ahn, Y.-R. Kim, D.-W. Lee, C.-W. Cho, Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukemia cells, J. Photochem. Photobiol., 2004, 75, 119–126.

    Article  CAS  Google Scholar 

  19. D.-S. Lim, S.-H. Ko, W.- Y. Lee, Silkworm-pheophorbide a mediated photodynamic therapy against B16F10 pigmented melanoma, J. Photochem. Photobiol., 2004, 74, 1–16.

    Article  CAS  Google Scholar 

  20. R. K. Pandey, L. N. Goswami, Y. Chen, A. Gryshuk, J. R. Missert, A. Oseroff, T. J. Dougherty, Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy, Lasers Surg. Med., 2006, 38, 445–467.

    Article  Google Scholar 

  21. A. Brandis, O. Mazor, E. Neumark, V. Rosenbach-Belkin, Y. Salomon, A. Scherz, Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: synthesis, solubility, phototoxicity and the effect of serum proteins, Photochem. Photobiol., 2005, 81, 983–993.

    Article  CAS  Google Scholar 

  22. Z. Huang, Q. Chen, D. Luck, J. Beckers, B. C. Wilson, N. Trncic, S. M. Larue, D. Blanc, F. W. Hetzel, Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide, Lasers Surg. Med., 2005, 36, 390–397.

    Article  CAS  Google Scholar 

  23. A. Hajri, S. Wack, C. Meyer, M. K. Smith, C. Leberquier, M. Kedinger, M. Aprahamian, In vitro and in vivo efficacy of Photofrin® and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells, Photchem. Photobiol., 2002, 75, 140–148.

    Article  CAS  Google Scholar 

  24. P. M.-K. Tang, J. Y.-W. Chan, S. W.-N. Au, S.-K. Kong, S. K.-W. Tsui, M. M.-Y. Waye, T. C.-W. Mak, W.-P. Fong, K.-P. Fung, Pheophorbide a, an active compound isolated from Scutellaria barbata, possess photodynamic activities by inducing apoptosis in human hepatocellular carcinoma, Cancer Biol. Ther., 2006, 5, 1111–1116.

    Article  CAS  Google Scholar 

  25. L. Wyld, M. W. R. Reed, N. J. Brown, Differential cell death response to photodynamic therapy is dependent on dose and cell type, Br. J. Cancer, 2001, 84, 1384–1386.

    Article  CAS  Google Scholar 

  26. A. P. Castano, T. N. Demidova, M. R. Hamblin, Mechanisms in photodynamic therapy: part two-cellular signalling, cell metabolism and modes of cell death, Photodiagn. Photodyn. Ther., 2005, 2, 1–23.

    Article  CAS  Google Scholar 

  27. Z. Jin, W. S. El-Deiry, Overview of cell death signaling pathways, Cancer Biol. Ther., 2005, 4, 139–163.

    Article  CAS  Google Scholar 

  28. A. Vantieghem, Y. Xu, Z. Assefa, J. Piette, J. r. Vandenheede, W. Merlevede, P. A. M. de Witte, P. Agostinis, Phosphoyrlation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis, J. Biol. Chem., 2002, 277, 37718–37731.

    Article  CAS  Google Scholar 

  29. D. Kessel, M. G. H. Vicente, J. J. Reiners, Jr., Initiation of apoptosis and autophagy by photodynamic therapy, Lasers Surg. Med., 2006, 38, 482–488.

    Article  Google Scholar 

  30. J. Mikeš, J. Kleban, V. Sacková, V. Horváth, E. Jamborová, A. Vaculová, A. Kozubík, J. Hofmanová, P. Fedorocko, Necrosis predominates in the cell death of human colon adenocarcinoma HT-29 cells treated under variable conditions of photodynamic therapy with hypericin, Photochem. Photobiol. Sci., 2007, 6, 758–766.

    Article  Google Scholar 

  31. Y.-J. Hsieh, C.-C. Wu, C.-J. Chang, J.-S. Yu, Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggers by photodynamic therapy: when plasma membranes are the main targets, J. Cell. Physiol., 2003, 194, 363–375.

    Article  CAS  Google Scholar 

  32. K. Plaetzer, T. Kiesslich, B. Krammer, P. Hammerl, Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT, Photochem. Photobiol. Sci., 2002, 1, 172–177.

    Article  CAS  Google Scholar 

  33. Z. Tong, G. Singh, A. J. Rainbow, The role of the p53 tumor suppressor in the response of human cells to photofrin-mediated photodynamic therapy, Photochem. Photobiol., 2000, 71, 201–210.

    Article  CAS  Google Scholar 

  34. M. Barberi-Heyob, P.-O. Védrine, J.-L. Merlin, R. Millon, J. Abecassis, M.-F. Poupon, F. Guillemin, Wild-type p53 gene transfer into mutated p53 HT29 cells improves sensitivity to photodynamic therapy via induction of apoptosis, Int. J. Oncol., 2004, 24, 951–958.

    CAS  PubMed  Google Scholar 

  35. V. Heinzelmann-Schwarz, A. Fedier, R. Hornung, H. Walt, U. Haller, D. Fink, Role of p53 and ATM in photodynamic therapy-induced apoptosis, Lasers Surg. Med., 2003, 33, 182–189.

    Article  Google Scholar 

  36. G. Feng, N. Kaplowitz, Mechanism of staurosporine-induced apoptosis in murine hepatocytes, Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 282, G825–G834.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Tyng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WT., Tsao, HW., Chen, YY. et al. A study on the photodynamic properties of chlorophyll derivatives using human hepatocellular carcinoma cells. Photochem Photobiol Sci 6, 1341–1348 (2007). https://doi.org/10.1039/b704539e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b704539e

Navigation