Skip to main content
Log in

Firefly luminescence: A historical perspective and recent developments

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Significant advances have occurred regarding our knowledge of firefly luciferase mechanisms. Although most of this progress was an outcome of molecular biology and structural studies, important achievements have also occurred on its fundamental chemistry. Those developments are here summarized and presented in a historical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Harvey, in A history of luminescence: from the earliest times until 1900, Dover Phoenix, 1957.

    Google Scholar 

  2. O. Shimomura, in Bioluminescence: Chemical Principles and Methods, World Scientific Publishing Company, 2006.

    Book  Google Scholar 

  3. E. N. Harvey, in Bioluminescence, Academic Press, 1952.

    Google Scholar 

  4. V. R. Viviani, The origin, diversity, and structure function relationships of insect luciferases Cell. Mol. Life Sci., 2002, 59, 1833–1850.

    Article  CAS  PubMed  Google Scholar 

  5. K. V. Wood, The chemical mechanism and evolutionary development of beetle bioluminescence Photochem. Photobiol., 1995, 62, 662–673.

    Article  CAS  Google Scholar 

  6. F. McCapra, The chemistry of bioluminescence Proc. R. Soc. London, Ser. B, 1982, 215, 247–272.

    Article  CAS  Google Scholar 

  7. T. Wilson, J. W. Hastings, Bioluminescence Annu. Rev. Cell Dev. Biol., 1998, 14, 197–230.

    Article  CAS  PubMed  Google Scholar 

  8. W. D. McElroy, From the precise to the ambiguous: light, bonding, and administration Annu. Rev. Microbiol., 1976, 30, 1–21.

    Article  CAS  PubMed  Google Scholar 

  9. J. W. Hastings, Firefly Flashes and Royal Flushes: Life in a full house J. Biolumin. Chemilumin., 1989, 4, 29.

    Article  CAS  PubMed  Google Scholar 

  10. W. D. McElroy, The energy source for bioluminescence in an isolated system Proc. Natl. Acad. Sci. USA, 1947, 33, 342–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W. D. McElroy, H. E. Seliger, The chemistry of light emission Adv. Enzymol., 1963, 25, 119–166.

    Google Scholar 

  12. W. D. McElroy, B. L. Strehler, Factors influencing the response of the bioluminescent reaction Arch. Biochem., 1949, 22, 420–433.

    CAS  PubMed  Google Scholar 

  13. J. W. Hastings, W. D. McElroy, J. Coulombre, The effect of oxygen upon the immobilization reaction in firefly luminescence J. Cell. Comp. Physiol., 1953, 42, 137–150.

    Article  CAS  PubMed  Google Scholar 

  14. A. A. Green, W. D. McElroy, Crystalline firefly luciferase Biochim. Biophys. Acta, 1956, 20, 170–176.

    Article  CAS  PubMed  Google Scholar 

  15. W. D. McElroy, A. Green, Function of adenosine triphosphate in the activation of luciferin Arch. Biochem. Biophys., 1956, 46, 399–416.

    Article  Google Scholar 

  16. B. Bitler, W. D. McElroy, The preparation and properties of crystalline firefly luciferin Arch. Biochem. Biophys., 1957, 72, 358–368.

    Article  CAS  PubMed  Google Scholar 

  17. W. C. Rhodes, W. D. McElroy, The synthesis and function of luciferyl–adenylate and oxyluciferyl–adenylate J. Biol. Chem., 1958, 233, 1528–1537.

    Article  CAS  PubMed  Google Scholar 

  18. W. C. Rhodes, W. D. McElroy, Enzymatic synthesis of adenyl-oxyluciferin Science, 1958, 128, 253–254.

    Article  CAS  PubMed  Google Scholar 

  19. R. T. Lee, J. L. Denburg, W. D. McElroy, Substrate binding properties of firefly luciferase. II. ATP, binding site Arch. Biochem. Biophys., 1970, 141, 38–52.

    Article  CAS  PubMed  Google Scholar 

  20. J. D. Moyer, J. F. Henderson, Nucleoside triphosphate specificity of firefly luciferase Anal. Biochem., 1983, 131, 187–189.

    Article  CAS  PubMed  Google Scholar 

  21. G. Momsen, Firefly luciferase reacts with P-1,P-5-Di (adenosine-5’-) pentaphosphate and adenosine-5’-tetraphosphate Biochem. Biophys. Res. Commun., 1978, 84, 816–822.

    Article  CAS  PubMed  Google Scholar 

  22. A. Sillero, M. A. G. Sillero, Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase and several ligases Pharmacol. Ther., 2000, 87, 91–102.

    Article  CAS  PubMed  Google Scholar 

  23. M. Deluca, N. J. Leonard, B. J. Gates, W. D. McElroy, The role of 1N-ethenoadenosine triphosphate and 1N-ethenoadenosine monophosphate in firefly luminescence Proc. Natl. Acad. Sci. USA, 1973, 70, 1664–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. E. H. White, G. F. Field, W. D. McElroy, F. McCapra, Structure and synthesis of firefly luciferin J. Am. Chem. Soc., 1961, 83, 2402–2403.

    Article  CAS  Google Scholar 

  25. E. H. White, G. F. Field, F. McCapra, Structure and synthesis of firefly luciferin J. Am. Chem. Soc., 1963, 85, 337–343.

    Article  CAS  Google Scholar 

  26. L. J. Bowie, Synthesis of firefly luciferin and structural analogs Methods Enzymol., 1978, 57, 15–28.

    Article  CAS  Google Scholar 

  27. H. E. Seliger, W. D. McElroy, E. H. White, G. F. Field, Stereospecificity and firefly bioluminescence, a comparison of natural and synthetic luciferin Proc. Natl. Acad. Sci. USA, 1961, 47, 1129–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. W. D. McElroy, H. H. Seliger, Mechanism of action of firefly luciferase Fed. Proc., 1962, 21, 1006–1012.

    CAS  Google Scholar 

  29. N. Lembert, Firefly luciferase can use L-Luciferin to produce light Biochem. J., 1996, 317, 273–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Nakamura, S. Maki, Y. Amano, Y. Ohkita, K. Niwa, T. Hirano, Y. Ohmiya, H. Niwa, Firefly luciferase exhibits bimodal action depending on the luciferin chirality Biochem. Biophys. Res. Commun., 2005, 331, 471–475.

    Article  CAS  PubMed  Google Scholar 

  31. H. Fraga, J. C. Esteves da Silva, R. Fontes, Identification of luciferyl adenylate and luciferyl coenzyme a synthesized by firefly luciferase ChemBioChem, 2004, 5, 110–115.

    Article  CAS  PubMed  Google Scholar 

  32. K. Ayabe, T. Zako, H. Ueda, The role of firefly luciferase C-terminal domain in efficient coupling of adenylation and oxidative steps FEBS Lett., 2005, 579, 4389–4394.

    Article  CAS  PubMed  Google Scholar 

  33. H. H. Seliger, W. D. McElroy, Chemiluminescence of firefly luciferin without enzyme Science, 1962, 132, 683–685.

    Article  Google Scholar 

  34. E. H. White, E. Rapaport, H. S. Howard, T. A. Hopkins, The chemi and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states Bioorg. Chem., 1971, 1, 92–122.

    Article  CAS  Google Scholar 

  35. F. McCapra, Chemical mechanisms in bioluminescence Acc. Chem. Res., 1976, 9, 201–208.

    Article  CAS  Google Scholar 

  36. T. A. Hopkins, H. H. Seliger, E. H. White, M. W. Cass, Chemiluminescence of firefly luciferin. A model for bioluminescent reaction and identification of product excited state J. Am. Chem. Soc., 1967, 89, 7148–7150.

    Article  CAS  PubMed  Google Scholar 

  37. F. McCapra, Y. C. Chang, V. P. François, Chemiluminescence of a firefly luciferin analogue Chem. Commun., 1968 22–23.

    Google Scholar 

  38. M. M. Rauhut, Chemiluminescence from concerted peroxide decomposition reactions Acc. Chem. Res., 1968, 2, 80–87.

    Article  Google Scholar 

  39. P. J. Plant, E. H. White, W. D. McElroy, The decarboxylation of luciferin in firefly bioluminescence Biochem. Biophys. Res. Commun., 1968, 31, 98–103.

    Article  CAS  PubMed  Google Scholar 

  40. O. Shimomura, T. Goto, F. H. Johnson, Source of oxygen in CO2 produced in bioluminescent oxidation of firefly luciferin Proc. Natl. Acad. Sci. USA, 1977, 74, 2799–2802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. E. H. White, M. G. Steinmetz, J. D. Miano, P. D. Wildes, R. Morland, Chemi- and bioluminescence of firefly luciferin J. Am. Chem. Soc., 1980, 102, 3199–3208.

    Article  CAS  Google Scholar 

  42. W. D. McElroy, H. H. Seliger, E. H. White, Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin Photochem. Photobiol., 1969, 10, 153–170.

    Article  CAS  PubMed  Google Scholar 

  43. N. Suzuki, M. Sato, K. Nishikawa, T. Goto, Synthesis and spectral properties of 2-(6’-hydroxythiazol-2’-yl)-4-hydroxythiazole, a possible emitting species in the firefly bioluminescence Tetrahedron Lett., 1969, 53, 4683–4684.

    Article  Google Scholar 

  44. N. Suzuki, T. Goto, Firefly bioluminescence. II. Identification, of 2-(6’-hydroxybenzothiazol-2’-Yl)-4-hydroxthiazole as a product in bioluminescence of firefly lanterns and as a product in chemiluminescence of firefly luciferin in DMSO Tetrahedron Lett., 1971 2021–2024.

    Google Scholar 

  45. N. Suzuki, M. Sato, K. Okada, T. Goto, N. Suzuki, M. Sato, K. Okada, T. Goto, Studies on firefly bioluminescence - I. Synthesis, and spectral properties of firefly oxyluciferin. A possible emitting species in firefly bioluminescence Tetrahedron, 1972, 28, 4065–4074.

    Article  CAS  Google Scholar 

  46. N. Suzuki, T. Goto, Studies on Firefly Bioluminescence - II. Identification, of oxyluciferin as a product in bioluminescence of firefly lanterns and in chemiluminescence of firefly luciferin Tetrahedron, 1972, 28, 4075–4082.

    Article  CAS  Google Scholar 

  47. M. Deluca, Firefly luciferase Adv. Enzymol., 1976, 44, 37–68.

    CAS  PubMed  Google Scholar 

  48. B. J. Gates, M. DeLuca, The production of oxyluciferin during the firefly luciferase light reaction Arch. Biochem. Biophys., 1975, 169, 616–621.

    Article  CAS  PubMed  Google Scholar 

  49. R. Fontes, A. Dukhovich, A. Sillero, M. A. Sillero, Synthesis of dehydroluciferin by firefly luciferase: effect of dehydroluciferin, coenzyme A and nucleoside triphosphates on the luminescent reaction Biochem. Biophys. Res. Commun., 1997, 237, 445–450.

    Article  CAS  PubMed  Google Scholar 

  50. R. Fontes, B. Ortiz, A. de Diego, A. Sillero, M. A. Gunther Sillero, Dehydroluciferyl–AMP is the main intermediate in the luciferin dependent synthesis of Ap4A catalyzed by firefly luciferase FEBS Lett., 1998, 438, 190–194.

    Article  CAS  PubMed  Google Scholar 

  51. J. C. G. E. da Silva, J. M. C. S. Magalhaes, R. Fontes, Identification of enzyme produced firefly oxyluciferin by reverse phase HPLC Tetrahedron Lett., 2001, 42, 8173–8176.

    Article  Google Scholar 

  52. B. R. Branchini, M. H. Murtiashaw, R. A. Magyar, N. C. Portier, M. C. Ruggiero, J. G. Stroh, Yellow-green and red firefly bioluminescence from 5,5-dimethyloxyluciferin J. Am. Chem. Soc., 2002, 124, 2112–2113.

    Article  CAS  PubMed  Google Scholar 

  53. Y. Oba, T. Tanaka, S. Inouye, Catalytic properties of domain-exchanged chimeric proteins between firefly luciferase and Drosophila fatty Acyl-CoA Synthetase CG6178 Biosci., Biotechnol., Biochem., 2006, 70, 60364–60370.

    Google Scholar 

  54. W. D. McElroy, C. S. Rainwater, Spectral energy distribution of the light emitted by firefly extracts J. Cell. Comp. Physiol., 1948, 32, 421–425.

    Article  Google Scholar 

  55. H. H. Seliger, W. D. McElroy, The colors of firefly bioluminescence: enzyme configuration and species specificity Proc. Natl. Acad. Sci. USA, 1964, 52, 75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. H. H. Seliger, W. D. McElroy, Spectral emission and quantum yield of firefly bioluminescence Arch. Biochem. Biophys., 1960, 88, 136–141.

    Article  CAS  PubMed  Google Scholar 

  57. N. K. Tafreshi, S. Hosseinkhani, M. Sadeghizadeh, M. Sadeghi, B. Ranjbar, H. Naderi-Manesh, The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase J. Biol. Chem., 2007, 282, 8641–8647.

    Article  CAS  PubMed  Google Scholar 

  58. N. Kajiyama, E. Nakano, Isolation and characterization of mutants of firefly luciferase which produce different colors of light Protein Eng., 1991, 4, 691–693.

    Article  CAS  PubMed  Google Scholar 

  59. V. Viviani, F. G. C. Arnoldi, F. T. Ogawa, M. Brochetto-Braga, Few substitutions affect the bioluminescence spectra of Phixotrix (Coleoptera: Phengodidae) luciferases: a site-directed mutagenesis survey Luminescence, 2007, 22, 362–369.

    Article  CAS  PubMed  Google Scholar 

  60. T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata, H. Kato, tructural basis for the spectral difference in luciferase bioluminescence Nature, 2006, 440, 372–376.

    Article  CAS  PubMed  Google Scholar 

  61. E. H. White, E. Rapaport, T. A. Hopkins, H. H. Seliger, Chemi- and bioluminescence of firefly luciferin J. Am. Chem. Soc., 1969, 91, 2178–2180.

    Article  CAS  PubMed  Google Scholar 

  62. E. H. White, B. R. Branchini, Modification of firefly luciferase with a luciferin analog - red light producing enzyme J. Am. Chem. Soc., 1975, 97, 1243–1245.

    Article  CAS  PubMed  Google Scholar 

  63. F. McCapra, D. J. Gilfoyle, D. W. Young, N. J. Church and P. Spencer, in Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects, Wiley, Chichester, UK, 1994.

    Google Scholar 

  64. G. Orlova, J. D. Goddard, Y. Brovko, Theoretical study of the amazing firefly bioluminescence: the formation and structures of the light emitters J. Am. Chem. Soc., 2003, 125, 6962–6971.

    Article  CAS  PubMed  Google Scholar 

  65. N. Nakatani, J. Hasegawa, H. Nakatsuji, Red light in chemiluminescence and yellow-green light in bioluminescence: color-tuning mechanism of firefly, Photinus pyralis, studied by the symmetry-adapted cluster-configuration interaction method J. Am. Chem. Soc., 2007, 129, 8756–8765.

    Article  CAS  PubMed  Google Scholar 

  66. O. A. Gandelman, L. Y. Brovko, N. N. Ugarova, A. Y. Chikishev, A. P. Shkurimov, Oxyluciferin fluorescence is a model of native bioluminescence in the firefly luciferin luciferase system J. Photochem. Photobiol., 1993, 19, 187–191.

    Article  CAS  Google Scholar 

  67. H. H. Seliger, W. D. McElroy, Quantum yield in the oxidation of firefly luciferin Biochem. Biophys. Res. Commun., 1959, 1, 21–24.

    Article  CAS  Google Scholar 

  68. Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, H. Akiyama, Firefly bioluminescence quantum yield and color change by pH-sensitive green emission Nat. Photonics, 2008, 2, 44–47.

    Article  CAS  Google Scholar 

  69. K. R. Kopecky, C. Munford, Luminescence in thermal decomposition of 3,3,4-trimethyl-1,2-dioxetane Can. J. Chem., 1969, 47, 709.

    Article  CAS  Google Scholar 

  70. T. Wilson, Chemiluminescence in the liquid phase: thermal cleavage of dioxetanes Int. Rev. Sci. Phys. Chem. Ser. Two, 1976, 9, 265–311.

    CAS  Google Scholar 

  71. F. McCapra, Chemical generation of excited states: the basis of chemiluminescence and bioluminescence Methods Enzymol., 2000, 305, 3–47.

    Article  CAS  PubMed  Google Scholar 

  72. G. B. Schuster, Chemiluminescence of organic peroxides - conversion of ground state reactants to excited state products by the chemically initiated electron-exchange luminescence mechanism Acc. Chem. Res., 1979, 12, 366–373.

    Article  CAS  Google Scholar 

  73. F. McCapra, I. Beheshti, A. Burford, R. A. Hann, K. A. Zaklika, Singlet excited states from dioxetane decomposition Chem. Commun., 1977, 9, 44–946.

    Google Scholar 

  74. M. Matsumoto, dvanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence J. Photochem. Photobiol., C, 2004, 5, 27–53.

    Article  CAS  Google Scholar 

  75. J. Y. Koo, S. P. Schmidt, G. B. Schuster, Bioluminescence of firefly - key steps in formation of electronically excited state for model systems Proc. Natl. Acad. Sci. USA, 1978, 75, 30–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. E. H. White, H. Worther, G. F. Field, W. D. McElroy, Analogs of firefly luciferin J. Org. Chem., 1965, 30, 2344–2348.

    Article  CAS  Google Scholar 

  77. W. Adam, D. Reinhardt, C. R. Saha-Moller, From the firefly bioluminescence to the dioxetane-based (AMPPD) chemiluminescence immunoassay: a retroanalysis Analyst, 1996, 121, 1527–1536.

    Article  CAS  Google Scholar 

  78. L. H. Catalani, T. Wilson, Electron transfer and chemiluminescence. Two inefficient systems: 1,4-dimethoxy-9,10-diphenylanthracene peroxide and diphenoyl peroxide J. Am. Chem. Soc., 1989, 111, 2633–2639.

    Article  CAS  Google Scholar 

  79. J. Y. Koo, G. B. Schuster, Chemiluminescence of diphenoyl peroxide - chemically initiated electron exchange luminescence - new general mechanism for chemical production of electronically excited states J. Am. Chem. Soc., 1978, 100, 4496–4503.

    Article  CAS  Google Scholar 

  80. B. R. Branchini, M. M. Hayward, S. Bamford, P. M. Brennan, E. J. Lajiness, Naphthyl- and quinolylluciferin: green and red light emitting firefly luciferin analogues Photochem. Photobiol., 1989, 49, 689–695.

    Article  CAS  PubMed  Google Scholar 

  81. R. A. Morton, T. A. Hopkins, H. H. Seliger, The spectroscopic properties of firefly luciferin and related compounds. An approach to product emission Biochemistry, 1969, 8, 1598–1607.

    Article  CAS  PubMed  Google Scholar 

  82. W. Adam, I. Bronstein, A. V. Trofimov, Solvatochromic effects on the electron exchange chemiluminescence (CIEEL) of spiroadamantyl-substituted dioxetanes and the fluorescence of relevant oxyanions J. Phys. Chem., 1998, 102, 5406–5414.

    Article  CAS  Google Scholar 

  83. W. D. McElroy, M. DeLuca, J. Travis, Molecular uniformity in biological catalyses. The enzymes concerned with firefly luciferin, amino acid, and fatty acid utilization are compared Science, 1967, 157, 150–160.

    Article  CAS  PubMed  Google Scholar 

  84. R. L. Airth, W. C. Rhodes, W. D. McElroy, The function of coenzyme A in luminescence Biochim. Biophys. Acta, 1958, 27, 519–532.

    Article  CAS  PubMed  Google Scholar 

  85. K. Chang, H. Xiang, D. Dunaway-Mariano, Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase Biochemistry, 1997, 36, 15650–15659.

    Article  CAS  PubMed  Google Scholar 

  86. Y. Oba, M. Ojika, S. Inouye, Firefly luciferase is a bifunctional enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA synthetase FEBS Lett., 2003, 540, 251–254.

    Article  CAS  PubMed  Google Scholar 

  87. Y. Oba, M. Sato, M. Ojika, S. Inouye, Enzymatic and genetic characterization of firefly luciferase and Drosophila CG6178 as a fatty acyl-CoA synthetase Biosci., Biotechnol., Biochem., 2005, 69, 819–828.

    Article  CAS  Google Scholar 

  88. Y. Oba, M. Qjika, S. Inouye, Characterization of CG6178 gene product with high sequence similarity to firefly luciferase in Drosophila melanogaster Gene, 2004, 329, 137–145.

    Article  CAS  PubMed  Google Scholar 

  89. Y. Oba, M. Sato, S. Inouye, Cloning and characterization of the homologous genes of firefly luciferase in the mealworm beetle Tenebrio molitor Insect Mol. Biol., 2006, 15, 293–299.

    Article  CAS  PubMed  Google Scholar 

  90. V. R. Viviani, E. J. H. Bechara, Larval Tenebrio molitor (Coleoptera: Tenebrionidae) fat body extracts catalyze firefly d-Luciferin- and ATP-dependent chemiluminescence: A luciferase-like enzyme Photochem. Photobiol., 1996, 63, 713–718.

    Article  CAS  Google Scholar 

  91. J. C. Day, L. C. Tisi, M. J. Bailey, Evolution of beetle bioluminescence: the origin of beetle luciferin Luminescence, 2004, 19, 8–20.

    Article  CAS  PubMed  Google Scholar 

  92. K. Cho, J. S. Lee, Y. D. Choi, K. S. Boo, Structural polymorphism of the luciferase gene on the firefly Luciola lateralis Insect Mol. Biol., 1999, 8, 193–200.

    Article  CAS  PubMed  Google Scholar 

  93. V. Viviani, Y. Ohmiya, Bovine serum albumin displays luciferase-like activity in presence of luciferyl–adenylate: insights on the origin of protoluciferase activity and bioluminescence colours Luminescence, 2006, 21, 262–267.

    Article  CAS  PubMed  Google Scholar 

  94. B. R. Branchini, R. A. Magyar, M. H. Murtiashaw, S. M. Anderson, M. Zimmer, Site-directed mutagenesis of histidine 245 in firefly luciferase: a proposed model of the active site Biochemistry, 1998, 37, 15311–15319.

    Article  CAS  PubMed  Google Scholar 

  95. H. Fraga, R. Fontes, J. E. da Silva, Synthesis of luciferyl coenzyme A: A bioluminescent substrate for firefly luciferase in the presence of AMP Angew. Chem., Int. Ed., 2005, 44, 3427–3429.

    Article  CAS  Google Scholar 

  96. M. Nakamura, K. Niwa, S. Maki, T. Hirano, Y. Ohmiya, H. Niwa, Construction of a new firefly bioluminescence system using l-Luciferin as substrate Tetrahedron Lett., 2006, 47, 1197–1200.

    Article  CAS  Google Scholar 

  97. K. Niwa, M. Nakamura, Y. Ohmiya, Stereoisomeric bio-inversion key to biosynthesis of firefly d-luciferin FEBS Lett., 2006, 580, 5283–5287.

    Article  CAS  PubMed  Google Scholar 

  98. V. Wsol, L. Skálová, B. Szotáková, Chiral inversion of drugs: coincidence or principle? Curr. Drug Met., 2004, 5, 517–533.

    Article  CAS  Google Scholar 

  99. D. Kato, K. Teruya, H. Yoshida, M. Takeo, S. Negoro, H. Otha, New application of firefly luciferase - it can catalyse the enantioselective thioester formation of 2-arylpropanoic acid FEBS J., 2007, 274, 3877–3885.

    Article  CAS  PubMed  Google Scholar 

  100. A. G. McLennan, Dinucleoside polyphosphates - friend or foe? Pharmacol. Ther., 2000, 87, 73–89.

    Article  CAS  PubMed  Google Scholar 

  101. M. A. G. Sillero, A. Guranowski, A. Sillero, Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase Eur. J. Biochem., 1991, 202, 507–513.

    Article  CAS  PubMed  Google Scholar 

  102. H. Fraga, J. da Silva, R. Fontes, pH opposite effects on synthesis of dinucleoside polyphosphates and on oxidation reactions catalyzed by firefly luciferase FEBS Lett., 2003, 543, 37–41.

    Article  CAS  PubMed  Google Scholar 

  103. A. G. McLennan, E. Mayers, I. Walker-Smith, H. Chen, Lanterns of the firefly Photinus pyralis contain abundant diadenosine 5’,5?-P1,P4-tetraphosphate pyrophosphohydrolase activity J. Biol. Chem., 1995, 270, 3706–3709.

    Article  CAS  PubMed  Google Scholar 

  104. G. A. Murphy, A. G. McLennan, Synthesis of dinucleoside tetraphosphates in transfected cells by a firefly luciferase reporter gene Cell. Mol. Life Sci., 2004, 61, 497–501.

    Article  CAS  PubMed  Google Scholar 

  105. Y. Ohmiya, F. I. Tsuji, Mutagenesis of firefly luciferase shows that cysteine residues are not required for bioluminescence activity FEBS Lett., 1997, 404, 115–117.

    Article  CAS  PubMed  Google Scholar 

  106. S. C. Alter, M. Deluca, The sulfhydryls of firefly luciferase are not essential for activity Biochemistry, 1986, 25, 1599–1605.

    Article  CAS  PubMed  Google Scholar 

  107. K. V. Wood, J. R. De Wet, N. Dewji, M. Deluca, Synthesis of active firefly luciferase by in vitro translation of RNA obtained from adult lanterns Biochem. Biophys. Res. Commun., 1984, 124, 592–596.

    Article  CAS  PubMed  Google Scholar 

  108. J. R. De Wet, K. V. Wood, D. R. Helinski, M. Deluca, Cloning firefly luciferase Methods Enzymol., 1986, 133, 3–14.

    Article  PubMed  Google Scholar 

  109. S. Gould, G. Keller, N. Hosken, J. Wilkinson, S. Subranami, A conserved tripeptide sorts proteins to peroxisomes J. Cell Biol., 1989, 108, 1657–1664.

    Article  CAS  PubMed  Google Scholar 

  110. E. Conti, N. P. Franks, P. Brick, Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes Structure, 1996, 4, 287–298.

    Article  CAS  PubMed  Google Scholar 

  111. E. Conti, T. Stachelhaus, M. A. Marahiel, P. Brick, Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S EMBO J., 1997, 16, 4174–4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. J. J. May, N. Kessler, M. A. Marahiel, M. T. Stubbs, Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases Proc. Natl. Acad. Sci. USA, 2002, 99, 12120–12125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. J. Gerwald, T. Liang, Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP Biochemistry, 2004, 43, 1425–1431.

    Article  CAS  Google Scholar 

  114. A. M. Gulick, X. Lu, D. Dunaway-Mariano, Crystal strucuture of 4-chlorobenzoate:CoA ligase/synthetase in the unliganded and aryl substrate bound states Biochemistry, 2004, 43, 8670–8679.

    Article  CAS  PubMed  Google Scholar 

  115. N. Kajiyama, E. Nakano, Enhancement of thermostability of firefly Luciferase from Luciola-Lateralis by a single amino-acid substitution Biosci., Biotechnol., Biochem., 1994, 58, 1170–1171.

    Article  CAS  Google Scholar 

  116. N. Kajiyama, E. Nakano, Thermostabilization of firefly luciferase by a single amino acid substitution at position-217 Biochemistry, 1993, 32, 13795–13799.

    Article  CAS  PubMed  Google Scholar 

  117. T. P. Sandalova, N. N. Ugarova, Model of the active site of firefly luciferase Biochemistry (Moscow), 1999, 64, 962–967.

    CAS  Google Scholar 

  118. B. R. Branchini, R. A. Magyar, M. H. Murtiashaw, N. C. Portier, The role of active site residue arginine 218 in firefly luciferase bioluminescence Biochemistry, 2001, 40, 2410–2418.

    Article  CAS  PubMed  Google Scholar 

  119. B. R. Branchini, R. A. Magyar, M. H. Murtiashaw, S. M. Anderson, L. C. Helgerson, M. Zimmer, ite-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color Biochemistry, 1999, 38, 13223–13230.

    Article  CAS  PubMed  Google Scholar 

  120. B. R. Branchini, M. H. Murtiashaw, R. A. Magyar, S. M. Anderson, The role of lysine 529, a conserved residue of the acyl adenylate forming enzyme superfamily, in firefly luciferase Biochemistry, 2000, 39, 5433–5440.

    Article  CAS  PubMed  Google Scholar 

  121. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, H. Boije, S. E. Fleet, A mutagenesis study of the putative luciferin binding site residues of firefly luciferase Biochemistry, 2003, 42, 10429–10436.

    Article  CAS  PubMed  Google Scholar 

  122. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, R. A. Magyar, S. A. Gonzalez, M. C. Ruggiero, J. G. Stroh, An alternative mechanism of bioluminescence color determination in firefly luciferase Biochemistry, 2004, 43, 7255-7162.

    Article  CAS  PubMed  Google Scholar 

  123. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, S. R. Wilkinson, N. F. Khattak, J. C. Rosenberg, M. Zimmer, Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain Biochemistry, 2005, 44, 1385–1393.

    Article  CAS  PubMed  Google Scholar 

  124. M. Deluca, W. D. McElroy, Kinetics of firefly luciferase catalyzed reactions Biochemistry, 1974, 13, 921–925.

    Article  CAS  PubMed  Google Scholar 

  125. M. Deluca, J. Wannlund, W. D. McElroy, Factors affecting the kinetics of light emission from crude and purified firefly luciferase Anal. Biochem., 1979, 95, 194–198.

    Article  CAS  PubMed  Google Scholar 

  126. S. R. Ford and F. R. Leach, in Bioluminescence Methods & Protocols (Methods in Molecular Biology), Human Press, New Jersey, USA, 1998.

    Google Scholar 

  127. W. D. McElroy, J. W. Hastings, J. Coulombre, V. Sonnenfeld, The mechanism of action of pyrophosphate in firefly luminescence Arch. Biochem. Biophys., 1953, 46, 399–416.

    Article  CAS  PubMed  Google Scholar 

  128. S. R. Ford, K. H. Chenault, L. S. Bunton, G. J. Hampton, J. McCarthy, M. S. Hall, S. J. Pangburn, L. M. Buck, F. R. Leach, Use of firefly luciferase for ATP measurement: other nucleotides enhance turnover J. Biolumin. Chemilumin., 1996, 11, 149–167.

    Article  CAS  PubMed  Google Scholar 

  129. J. J. Lemasters, C. R. Hackenbrock, Kinetics of product inhibition during firefly luciferase luminescence Biochemistry, 1977, 16, 445–447.

    Article  CAS  PubMed  Google Scholar 

  130. N. N. Ugarova, Luciferase of Luciola mingrelica fireflies. Kinetics and regulation mechanism J. Biolumin. Chemilumin., 1989, 4, 406–418.

    Article  CAS  PubMed  Google Scholar 

  131. T. Goto, I. Kubota, N. Suzuki and Y. Kishi, in Bioluminescence, Plenum Press, New York, USA, 1973.

    Google Scholar 

  132. J. L. Denburg, R. T. Lee, W. D. McElroy, Substrate binding properties of firefly luciferase. I. Luciferin, binding site Arch. Biochem. Biophys., 1969, 134, 381–394.

    Article  CAS  PubMed  Google Scholar 

  133. G. W. J. Moss, N. P. Franks, W. R. Lieb, Modulation of the general anesthetic sensitivity of a protein - a transition between two forms of firefly luciferase Proc. Natl. Acad. Sci. USA, 1991, 88, 134–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. N. P. Franks, A. Jenkins, E. Conti, W. R. Lieb, P. Brick, Structural basis for the inhibition of firefly luciferase by a general anesthetic Biophys. J., 1998, 75, 2205–2211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. H. Fraga, D. Fernandes, J. Novotny, R. Fontes, J. C. Esteves da Silva, Firefly luciferase produces hydrogen peroxide as a coproduct in dehydroluciferyl adenylate formation ChemBioChem, 2006, 7, 929–935.

    Article  CAS  PubMed  Google Scholar 

  136. B. R. Branchini, M. H. Murtiashaw, J. N. Carmody, E. E. Mygatt, T. L. Southworth, Synthesis of an N-acyl sulfamate analog of luciferyl–AMP: a stable and potent inhibitor of firefly luciferase Bioorg. Med. Chem. Lett., 2005, 15, 3860–3864.

    Article  CAS  PubMed  Google Scholar 

  137. H. Fraga, D. Fernandes, R. Fontes, J. C. Esteves da Silva, Coenzyme A affects firefly luciferase luminescence because it acts as a substrate and not as an allosteric effector FEBS J., 2005, 272, 5206–5216.

    Article  CAS  PubMed  Google Scholar 

  138. S. R. Ford, M. S. Hall, F. R. Leach, Enhancement of firefly luciferase activity by cytidine nucleotides Anal. Biochem., 1992, 204, 283–291.

    Article  CAS  PubMed  Google Scholar 

  139. K. V. Wood, Novel assay of firefly luciferase providing greater sensitivity and ease of use J. Cell Biol., 1990, 111, 380a.

    Article  Google Scholar 

  140. S. R. Ford, L. M. Buck, F. R. Leach, Does the sulfhydryl or the adenine moiety of CoA enhance firefly luciferase activity Biochim. Biophys. Acta, 1995, 1252, 180–184.

    Article  PubMed  Google Scholar 

  141. H. Fraga, J. da Silva, R. Fontes, Chemical synthesis and firefly luciferase produced dehydroluciferyl-coenzyme A Tetrahedron Lett., 2004, 45, 2117–2120.

    Article  CAS  Google Scholar 

  142. H. Fraga, R. Fontes and J. E. da Silva, unpublished results.

  143. O. Gandelman, I. Allue, K. Bowers, P. Cobbold, Cytoplasmic factors that affect the intensity and stability of bioluminescence from firefly luciferase in living mammalian cells J. Biolumin. Chemilumin., 1994, 9, 363–371.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Fraga.

Additional information

This paper was published as part of the themed issue on bioluminescence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraga, H. Firefly luminescence: A historical perspective and recent developments. Photochem Photobiol Sci 7, 146–158 (2008). https://doi.org/10.1039/b719181b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b719181b

Navigation