Skip to main content
Log in

Effects of photodynamic therapy on the endocytic pathway

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this report, we describe an effect of photodynamic therapy (PDT) on membrane trafficking in murine 1c1c7 hepatoma cells. A brief exposure of 1c1c7 cells to a 20 nM concentration of the phosphatidylinositol kinase class-3 antagonist wortmannin led to the rapid appearance of cytoplasmic vacuoles. Fluorescence monitoring of plasma membrane-associated 1-[4-(trimethylamino)- phenyl]-6-phenylhexa-1,3,5-triene (TDPH) over time demonstrated that the wortmannin-induced vacuoles were derived from endocytosed plasma membrane. Low-dose photodamage catalyzed by the lysosomal photosensitizer NPe6, prior to the addition of wortmannin, prevented formation of these vacuoles. NPe6 was found to suppress for several hours the normal trafficking of TDPH-labeled plasma membrane to the cytosol, and the formation of punctate TDPH-labeled cytoplasmic vesicles. The ability of NPe6-induced photodamage to suppress wortmannin-induced vacuolization occurred under conditions that did not disrupt lysosomes and were at or below the threshold of cytostatic/cytotoxic effects. Furthermore, the suppressive effects of NPe6-PDT were not prevented by inclusion of an agent that stabilized lysosomal membranes, or by E64d, an inhibitor of lysosomal cathepsin proteases. Mitochondrial photodamage was less effective at preventing wortmannin-induced vacuole formation and PDT directed against the ER had no effect. The role of photodamage to the endocytic pathway may be a hitherto unexplored effect on cells that selectively accumulate photosensitizing agents. These results indicate that photodamage directed against endosomes/lysosomes has effects independent of the release of lysosomal proteases. aDepartment of Pharmacology,Wayne State University School of Medicine, Detroit, MI, 48201, USA bCancer Biology Program, Wayne State University, Detroit, MI, 48201, USA cInstitute of Environmental Health Sciences, Eugene Applebaum Building, Wayne State University, Detroit, MI, 48201, USA Abbreviations BPD Benzoporphyrin derivative E64d 2S,3S-trans-(ethoxycarbonyloxirane-2-carbonyl)- L-leucine-(3-methylbutyl) amide (an inhibitor of calpain and cysteine protease activity) ER Endoplasmic reticulum LDxx PDT dose that reduces viability to xx% of controls LMP Lysosomal membrane permeabilization LSG LysoSensor Green mTHPC meso-Tetrahydroxyphenylporphine NPe6 N-Aspartyl chlorine e63-O-MeSM 3-O-Methyl sphingomyelin PCI Photochemical internalization PDT Photodynamic therapy PI Phosphatidyl inositol TDPH 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5- Triene

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BPD:

Benzoporphyrin derivative

E64d:

2S,3S-trans-(ethoxycarbonyloxirane-2-carbonyl)-l-leucine-(3-methylbutyl) amide (an inhibitor ofcalpain and cysteine protease activity)

ER:

Endoplasmic reticulum

LDxx:

PDT dose that reduces viability to xx% of controls

LMP:

Lysosomal membrane permeabilization

LSG:

LysoSensor Green

mTHPC:

meso-Tetrahydroxyphenylporphine

NPe6:

N-Aspartyl chlorine e6

3-O-MeSM:

3-O-Methyl sphingomyelin

PCI:

Photochemical internalization

PDT:

Photodynamic therapy

PI:

Phosphatidyl inositol

TDPH:

1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene

References

  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  Google Scholar 

  2. J. J. Reiners Jr, P. Agostinis, K. Berg, N. L. Oleinick and D. Kessel, Assessing autophagy in the context of photodynamic therapy, Autophagy, 2010, 6, 7–18.

    Article  CAS  Google Scholar 

  3. N. L. Oleinick, R. L. Morris and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  Google Scholar 

  4. R. Kjeken, S. A. Mousavi, A. Brech, G. Griffiths and T. Berg, Wortmannin-sensitive trafficking steps in the endocytic pathway in rat liver endothelial cells, Biochem. J., 2001, 357(2), 497–503.

    Article  CAS  Google Scholar 

  5. B. J. Reaves, N. A. Bright, B. M. Mullock and J. P. Luzio, The effect of wortmannin on the localisation of lysosomal type I integral membrane glycoproteins suggests a role for phosphoinositide 3-kinase activity in regulating membrane traffic late in the endocytic pathway, J. Cell. Sci., 1996, 109, 749–762.

    CAS  PubMed  Google Scholar 

  6. H. Shpetner, M. Joly, D. Hartley and S. Corvera, Potential sites of PI-3 kinase function in the endocytic pathway revealed by the PI-3 kinase inhibitor, wortmannin, J. Cell Biol., 1996, 132, 595–605.

    Article  CAS  Google Scholar 

  7. N. A. Bright, M. R. Lindsay, A. Stewart and J. P. Luzio, The relationship between lumenal and limiting membranes in swollen late endocytic compartments formed after wortmannin treatment or sucrose accumulation, Traffic, 2001, 2, 631–642.

    Article  CAS  Google Scholar 

  8. F. Scarlatti, R. Maffei, I. Beau, R. Ghidoni and P. Cagodno, Noncanonical autophagy: an exception or an underestimated form of autophagy?, Autophagy, 2008, 4, 1083–1085.

    Article  CAS  Google Scholar 

  9. D. Kessel, M. G. Vicente and J. J. Reiners Jr, Initiation of apoptosis and autophagy by photodynamic therapy, Lasers Surg.Med., 2006, 38, 482–488.

    Article  Google Scholar 

  10. G. Ouédraogo, P. Morlière, C. Mazière, J. C. Mazière and R. Santus, Alteration of the endocytotic pathway by photosensitization with fluoroquinolones, Photochem. Photobiol., 2000, 72, 458–463.

    Article  Google Scholar 

  11. G. Ouédraogo, P. Morlière, M. Bazin, R. Santus, B. Kratzer, M. A. Miranda and J. V. Castell, Lysosomes are sites of fluoroquinolone photosensitization in human skin fibroblasts: a microspectro-fluorometric approach, Photochem. Photobiol., 1999, 70, 123–129.

    PubMed  Google Scholar 

  12. F. G. Prendergast, R. P. Haugland and P. J. Callahan, 1-[4- (Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties and use as a fluorescent probe of lipid bilayers, Biochemistry, 1981, 20, 7333–7338.

    Article  CAS  Google Scholar 

  13. D. Illinger and J. G. Kuhry, The kinetic aspects of intracellular fluorescence labeling with TMA-DPH support the maturation model for endocytosis in L929 cells, J. Cell Biol., 1994, 125, 783–794.

    Article  CAS  Google Scholar 

  14. P. J. Lou, P. S. Lai, M. J. Shieh, A. J. Macrobert, K. Berg and S. G. Bown, Reversal of doxorubicin resistance in breast cancer cells by photochemical internalization, Int. J. Cancer, 2006, 119, 2692–2698.

    Article  CAS  Google Scholar 

  15. O. J. Norum, P. K. Selbo, A. Weyergang, K. E. Giercksky and K. Berg, Photochemical internalization (PCI) in cancer therapy: from bench towards bedside medicine, J. Photochem. Photobiol., B, 2009, 96, 83–92.

    Article  CAS  Google Scholar 

  16. L. Prasmickaite, A. Høgset, P. K. Selbo, B. Ϙ. Engesaeter, M. Hellum and K. Berg, Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy, Br. J. Cancer, 2002, 86, 652–657.

    Article  CAS  Google Scholar 

  17. P. R. Twentyman and M. Luscombe, A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity, Br. J. Cancer, 1987, 56, 279–285.

    Article  CAS  Google Scholar 

  18. J. J. Reiners Jr., J. A. Caruso, P. A. Mathieu, B. Chelladurai, X. H. Yin and D. Kessel, Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage, Cell Death Differ., 2002, 9, 934–944.

    Article  CAS  Google Scholar 

  19. J. A. Caruso, P. A. Mathieu and J. J. Reiners Jr., Sphingomyelins suppress the targeted disruption of lysosomes/endosomes by the photosensitizer NPe6 during photodynamic therapy, Biochem. J., 2005, 392, 325–334.

    Article  CAS  Google Scholar 

  20. T. I. Peng, C. J. Chang, M. J. Guo, Y. H. Wang, J. S. Yu, H.Y. Wu and M. J. Jou, Mitochondrion-targeted photosensitizer enhances the photodynamic effect-induced mitochondrial dysfunction and apoptosis, Ann. N. Y. Acad. Sci., 2005, 1042, 419–428.

    Article  CAS  Google Scholar 

  21. M. H. Teiten, L. Bezdetnaya, P. Morlière, R. Santus and F. Guillemin, Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan localisation in cultured tumour cells, Br. J. Cancer, 2003, 88, 146–152.

    Article  Google Scholar 

  22. D. Kessel, Effects of PDT on the endocytic pathway, Proc. SPIE, 2010, 7551, 1–7.

    Google Scholar 

  23. X. Chen and Z. Wang, Regulation of intracellular trafficking of the EGF receptor by Rab5 in the absence of phosphatidylinositol 3-kinase activity, EMBO Rep., 2001, 2, 68–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kessel, D., Price, M., Caruso, J. et al. Effects of photodynamic therapy on the endocytic pathway. Photochem Photobiol Sci 10, 491–498 (2011). https://doi.org/10.1039/c0pp00276c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00276c

Navigation