Skip to main content
Log in

Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bright, long-lasting and non-phototoxic organic fluorophores are essential to the continued advancement of biological imaging. Traditional approaches towards achieving photostability, such as the removal of molecular oxygen and the use of small-molecule additives in solution, suffer from potentially toxic side effects, particularly in the context of living cells. The direct conjugation of small-molecule triplet state quenchers, such as cyclooctatetraene (COT), to organic fluorophores has the potential to bypass these issues by restoring reactive fluorophore triplet states to the ground state through intra-molecular triplet energy transfer. Such methods have enabled marked improvement in cyanine fluorophore photostability spanning the visible spectrum. However, the generality of this strategy to chemically and structurally diverse fluorophore species has yet to be examined. Here, we show that the proximal linkage of COT increases the photon yield of a diverse range of organic fluorophores widely used in biological imaging applications, demonstrating that the intra-molecular triplet energy transfer mechanism is a potentially general approach for improving organic fluorophore performance and photostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, T. Ha, Annu. Rev. Biochem., 2008, 77, 51–76.

    Article  CAS  PubMed  Google Scholar 

  2. B. Huang, M. Bates, X. Zhuang, Annu. Rev. Biochem., 2009, 78, 993–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. P. Sheetz, D. E. Koppel, Proc. Natl. Acad. Sci. U. S. A., 1979, 76, 3314–3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R. Dixit, R. Cyr, Plant J., 2003, 36, 280–290.

    Article  CAS  PubMed  Google Scholar 

  5. J. W. Dobrucki, D. Feret, A. Noatynska, Biophys. J., 2007, 93, 1778–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Z. Liu, L. D. Lavis, E. Betzig, Mol. Cell, 2015, 58, 644–659.

    Article  CAS  PubMed  Google Scholar 

  7. T. Ha, P. Tinnefeld, Annu. Rev. Phys. Chem., 2012, 63, 595–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Levitus, S. Ranjit, Q. Rev. Biophys., 2011, 44, 123–151.

    Article  CAS  PubMed  Google Scholar 

  9. Q. Zheng, M. F. Juette, S. Jockusch, M. R. Wasserman, Z. Zhou, R. B. Altman, S. C. Blanchard, Chem. Soc. Rev., 2014, 43, 1044–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Fernandez-Suarez, A. Y. Ting, Nat. Rev. Mol. Cell Biol., 2008, 9, 929–943.

    Article  CAS  PubMed  Google Scholar 

  11. R. E. Benesch, R. Benesch, Science, 1953, 118, 447–448.

    Article  CAS  PubMed  Google Scholar 

  12. C. E. Aitken, R. A. Marshall, J. D. Puglisi, Biophys. J., 2008, 94, 1826–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. C. Blanchard, R. L. Gonzalez, H. D. Kim, S. Chu, J. D. Puglisi, Nat. Struct. Mol. Biol., 2004, 11, 1008–1014.

    Article  CAS  PubMed  Google Scholar 

  14. R. Dave, D. S. Terry, J. B. Munro, S. C. Blanchard, Biophys. J., 2009, 96, 2371–2381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. N. Glazer, FASEB J., 1988, 2, 2487–2491.

    Article  CAS  PubMed  Google Scholar 

  16. I. Rasnik, S. A. McKinney, T. Ha, Nat. Methods, 2006, 3, 891–893.

    Article  CAS  PubMed  Google Scholar 

  17. J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, Angew. Chem., Int. Ed., 2008, 47, 5465–5469.

    Article  CAS  Google Scholar 

  18. J. L. Alejo, S. C. Blanchard, O. S. Andersen, Biophys. J., 2013, 104, 2410–2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. J. Sakon, K. R. Weninger, Nat. Methods, 2010, 7, 203–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R. B. Altman, D. S. Terry, Z. Zhou, Q. Zheng, P. Geggier, R. A. Kolster, Y. Zhao, J. A. Javitch, J. D. Warren, S. C. Blanchard, Nat. Methods, 2012, 9, 68–71.

    Article  CAS  Google Scholar 

  21. R. B. Altman, Q. Zheng, Z. Zhou, D. S. Terry, J. D. Warren, S. C. Blanchard, Nat. Methods, 2012, 9, 428–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Q. Zheng, S. Jockusch, Z. Zhou, R. B. Altman, J. D. Warren, N. J. Turro, S. C. Blanchard, J. Phys. Chem. Lett., 2012, 3, 2200–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P. Tinnefeld, T. Cordes, Nat. Methods, 2012, 9, 426–427.

    Article  CAS  PubMed  Google Scholar 

  24. S. C. Blanchard, Nat. Methods, 2012, 9, 427–428.

    Article  CAS  Google Scholar 

  25. J. H. M. van der Velde, E. Ploetz, M. Hiermaier, J. Oelerich, J. W. de Vries, G. Roelfes, T. Cordes, ChemPhysChem, 2013, 14, 4084–4093.

    Article  PubMed  CAS  Google Scholar 

  26. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, University Science Books, 2010.

    Google Scholar 

  27. R. Pappalardo, H. Samelson, A. Lempicki, Appl. Phys. Lett., 1970, 16, 267–269.

    Article  CAS  Google Scholar 

  28. T. N. Das, K. I. Priyadarshini, J. Chem. Soc., Faraday Trans., 1994, 90, 963–968.

    Article  CAS  Google Scholar 

  29. P. J. Forward, A. A. Gorman, I. Hamblett, J. Chem. Soc., Chem. Commun., 1993, 250–251. 10.1039/C39930000250

    Google Scholar 

  30. L. M. Frutos, O. Castaño, J. L. Andrés, M. Merchán, A. U. Acuña, J. Chem. Phys., 2004, 120, 1208–1216.

    Article  CAS  PubMed  Google Scholar 

  31. M. Rosenberg, C. Dahlstrand, K. Kilså, H. Ottosson, Chem. Rev., 2014, 114, 5379–5425.

    Article  CAS  PubMed  Google Scholar 

  32. P. G. Wenthold, D. A. Hrovat, W. T. Borden, W. C. Lineberger, Science, 1996, 272, 1456–1459.

    Article  CAS  PubMed  Google Scholar 

  33. L.-M. Frutos, O. Castaño, M. Merchán, J. Phys. Chem. A, 2003, 107, 5472–5478.

    Article  CAS  Google Scholar 

  34. R. P. Frueholz, A. Kuppermann, J. Chem. Phys., 1978, 69, 3614–3621.

    Article  CAS  Google Scholar 

  35. W. J. A. Koopmans, R. Buning, T. Schmidt, J. van Noort, Biophys. J., 2009, 97, 195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Y. Santoso, C. M. Joyce, O. Potapova, L. Le Reste, J. Hohlbein, J. P. Torella, N. D. F. Grindley, A. N. Kapanidis, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 715–720.

    Article  CAS  PubMed  Google Scholar 

  37. I. Konig, A. Zarrine-Afsar, M. Aznauryan, A. Soranno, B. Wunderlich, F. Dingfelder, J. C. Stuber, A. Pluckthun, D. Nettels, B. Schuler, Nat. Methods, 2015, 12, 773–779.

    Article  CAS  PubMed  Google Scholar 

  38. K. I. Willig, B. Harke, R. Medda, S. W. Hell, Nat. Methods, 2007, 4, 915–918.

    Article  CAS  PubMed  Google Scholar 

  39. P. H. Rieger, Electrochemistry, Prentice-Hall, 1987.

    Google Scholar 

  40. R. A. Marcus, Angew. Chem., Int. Ed. Engl., 1993, 32, 1111–1121.

    Article  Google Scholar 

  41. P. Holzmeister, A. Gietl, P. Tinnefeld, Angew. Chem., Int. Ed., 2014, 53, 5685–5688.

    Article  CAS  Google Scholar 

  42. J. B. Grimm, B. P. English, J. Chen, J. P. Slaughter, Z. Zhang, A. Revyakin, R. Patel, J. J. Macklin, D. Normanno, R. H. Singer, T. Lionnet, L. D. Lavis, Nat. Methods, 2015, 12, 244–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. G. Lukinavicius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa Jr., Z.-G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, K. Johnsson, Nat. Chem., 2013, 5, 132–139.

    Article  CAS  PubMed  Google Scholar 

  44. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, X. Zhuang, Nat. Methods, 2011, 8, 1027–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Agnew, K. Gee and T. Nyberg, Invitrogen Corporation, US Pat., US0249014, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Blanchard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Jockusch, S., Rodríguez-Calero, G.G. et al. Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability. Photochem Photobiol Sci 15, 196–203 (2016). https://doi.org/10.1039/c5pp00400d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00400d

Navigation