Skip to main content
Log in

The dark and bright sides of an enzyme: a three dimensional structure of the N-terminal domain of Zophobas morio luciferase-like enzyme, inferences on the biological function and origin of oxygenase/luciferase activity

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Beetle luciferases, the enzymes responsible for bioluminescence, are special cases of CoA-ligases which have acquired a novel oxygenase activity, offering elegant models to investigate the structural origin of novel catalytic functions in enzymes. What the original function of their ancestors was, and how the new oxygenase function emerged leading to bioluminescence remains unclear. To address these questions, we solved the crystal structure of a recently cloned Malpighian luciferase-like enzyme of unknown function from Zophobas morio mealworms, which displays weak luminescence with ATP and the xenobiotic firefly d-luciferin. The three dimensional structure of the N-terminal domain showed the expected general fold of CoA-ligases, with a unique carboxylic substrate binding pocket, permitting the binding and CoA-thioesterification activity with a broad range of carboxylic substrates, including short-, medium-chain and aromatic acids, indicating a generalist function consistent with a xenobiotic-ligase. The thioesterification activity with l-luciferin, but not with the d-enantiomer, confirms that the oxygenase activity emerged from a stereoselective impediment of the thioesterification reaction with the latter, favoring the alternative chemiluminescence oxidative reaction. The structure and site-directed mutagenesis support the involvement of the main-chain amide carbonyl of the invariant glycine G323 as the catalytic base for luciferin C4 proton abstraction during the oxygenase activity in this enzyme and in beetle luciferases (G343).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Zmo:

Zophobas morio

Ppy:

Photinus pyralis

Lcr:

Luciola cruciata.

References

  1. T. Wilson and J. W. Hastings, Bioluminescence, Annu. Rev. Cell Dev. Biol., 1998, 14, 197–230.

    Article  CAS  Google Scholar 

  2. H. H. Seliger, The origin of bioluminescence, Photochem. Photobiol., 1975, 21, 355–361.

    Article  CAS  Google Scholar 

  3. H. H. Seliger, The evolution of bioluminescence in bacteria, Photochem. Photobiol., 1987, 45, 291–297.

    Article  CAS  Google Scholar 

  4. J. F. Rees, B. Wergifosse, O. Noiset, M. Dubuisson, B. Janssens and E. M. Thompson, The origins of marine bioluminescence: turning oxygen defense mechanisms into deep-sea communication tools, J. Exp. Biol., 1998, 201, 1211–1221.

    Article  CAS  Google Scholar 

  5. J. W. Hastings, Bioluminescence, in Cell Physiology, ed. N. Sperelakis, Academic Press, New York, 2001, pp. 1115–1131.

    Google Scholar 

  6. V. R. Viviani, The origin, diversity and structure function relationships of insects luciferases, Cell. Mol. Life Sci., 2002, 59, 1833–1850.

    Article  CAS  Google Scholar 

  7. K. V. Wood, The chemical mechanism and evolutionary development of beetle bioluminescence, Photochem. Photobiol., 1995, 62, 662–673.

    Article  CAS  Google Scholar 

  8. V. R. Viviani and J. H. Bechara, Larval Tenebrio molitor (Coleoptera: Tenebrionidae) fat body extracts catalyze D-luciferin and ATP-dependent chemiluminescence. A luciferase-like enzyme, Photochem. Photobiol., 1996, 63, 713–718.

    Article  CAS  Google Scholar 

  9. V. R. Viviani, R. A. Prado, F. G. C. Arnoldi and F. C. Abdalla, An ancestral luciferase in the Malpighian tubules of a non-bioluminescent beetle, Photochem. Photobiol. Sci., 2009, 8, 57–61.

    Article  CAS  Google Scholar 

  10. V. R. Viviani, V. Scorsato, R. A. Prado, J. G. C. Pereira, K. Niwa, Y. Ohmiya and J. A. R. G. Barbosa, The origin of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase): luciferin stereoselectivity as a switch for the oxygenase activity, Photochem. Photobiol. Sci., 2010, 9, 1111–1119.

    Article  CAS  Google Scholar 

  11. V. R. Viviani, R. A. Prado, D. R. Neves, D. Kato and J. A. Barbosa, A route from darkness to light: emergence and evolution of luciferase activity in AMP-CoA-ligases inferred from a mealworm luciferase-like enzyme, Biochemistry, 2013, 52, 3963–3973.

    Article  CAS  Google Scholar 

  12. R. A. Prado, J. A. Barbosa, Y. Ohmiya and V. R. Viviani, Structural evolution of luciferase activity in Zophobas, mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site, Photochem. Photobiol. Sci., 2011, 10, 1226–1232.

    Article  CAS  Google Scholar 

  13. J. A. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni and R. J. Read, Phaser crystallographic software, J. Appl. Crystallogr., 2007, 40, 658–674.

    Article  CAS  Google Scholar 

  14. T. C. Terwiller, R. W. Grosse-Kunstleve, P. V. Afonine, N. W. Moriarty, P. H. Zwart, L. W. Hung, R. J. Read and P. D. Adams, Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2008, 64, 61–69.

    Article  Google Scholar 

  15. N. Echols, R. W. Grosse-Kunstleve, P. V. Afonine, G. Bunkóczi, V. B. Chen, J. J. Headd, J. A. McCoy, N. W. Moriarty, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger and P. D. Adams, Graphical tools for macromolecular crystallography in PHENIX, J. Appl. Crystallogr., 2012, 45, 581–586.

    Article  CAS  Google Scholar 

  16. P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, J. J. Headd, N. W. Moriarty, M. Mustyakimov, T. C. Terwilliger, A. Urzhumtsev, P. H. Zwart and P. D. Adams, Towards automated crystallographic structure refinement with phenix.refine, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2012, 68, 352–367.

    Article  CAS  Google Scholar 

  17. P. Emsley, B. Lohkamp, W. G. Scott and K. Cowtan, Features and development of Coot, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66, 486–501.

    Article  CAS  Google Scholar 

  18. V. B. Chen, W. B. Arendall 3rd, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson and D. C. Richardson, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66, 12–21.

    Article  CAS  Google Scholar 

  19. V. R. Viviani and Y. Ohmiya, Bovine serum albumin displays luciferase-like activity in presence of luciferyl-adenylate: insights on the origin of protoluciferase activity and bioluminescence colours, Luminescence, 2006, 21, 262–267.

    Article  CAS  Google Scholar 

  20. D. Kato, Y. Hiraishi, M. Maenaka, K. Yokoyama, K. Niwa, Y. Ohmiya, M. Takeo and S. Negoro, Interconversion of ketoprofen recognition in firefly luciferase-catalyzed enantioselective thioesterification reaction using from Pylocoeria miyako (PmL) and Hotaria parvura (HpL) just by mutating two amino acid residues, J. Biotechnol., 2013, 168, 277–283.

    Article  CAS  Google Scholar 

  21. E. Conti, N. P. Franks and P. Brick, Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes, Structure, 1996, 4, 287–298.

    Article  CAS  Google Scholar 

  22. T. Nakatsu, S. Ichiyama, J. Hiratale, A. Saldanha, N. Kibashi, K. Sakata and H. Kato, Structural basis for the spectral difference in luciferase bioluminescence, Nature, 2006, 440, 372–376.

    Article  CAS  Google Scholar 

  23. A. M. Gulick, V. J. Starai, A. R. Horswill, K. M. Homick and J. C. Escalante-Semerena, The 1,75 Å crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A, Biochemistry, 2003, 42, 2866–2873.

    Article  CAS  Google Scholar 

  24. T. Zako, K. Ayabe, T. Aburatani, N. Kamiya, A. Kitayama, H. Ueda and T. Nagamune, Luminescent and substrate binding activities of firefly luciferase N-terminal domain, Biochim. Biophys. Acta, 2003, 1649, 183–189.

    Article  CAS  Google Scholar 

  25. B. R. Branchini, R. A. Magyar, M. H. Murtiashaw, S. M. Anderson and V. Zimmer, Site-directed mutagenesis of histidine 245 in firefly luciferase: a proposed model of the active site, Biochemistry, 1998, 37, 15311–15319.

    Article  CAS  Google Scholar 

  26. B. R. Branchini, R. A. Magyar, M. H. Murtiashaw, S. M. Anderson, L. C. Helgerson and M. Zimmer, Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color, Biochemistry, 1999, 38, 13223–13230.

    Article  CAS  Google Scholar 

  27. M. Knights and C. J. Drogemuller, Xenobiotic-CoA ligases: kinetic and molecular characterization, Curr. Drug Metab., 2000, 1, 49–66.

    Article  CAS  Google Scholar 

  28. H. P. Stuible and E. Kombrink, Identification of the substrate specificity-conferring amino-acid residues of 4-coumarate: CoenzymeA ligase allows the rational design of mutant enzymes with new catalytic properties, J. Biol. Chem., 2001, 276, 26893–26897.

    Article  CAS  Google Scholar 

  29. T. Beuerle and E. Pichersky, Purification and characterization of benzoate: coenzyme A ligase from Clarkia breweri, Arch. Biochem. Biophys., 2002, 400, 258–264.

    Article  CAS  Google Scholar 

  30. Y. Oba, M. Ojika and S. Inouye, Firefly luciferase is a bifunctional enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA synthetase, FEBS Lett., 2003, 540, 251–254.

    Article  CAS  Google Scholar 

  31. W. C. Rhodes and W. D. McElroy, The synthesis and function of luciferyl-adenylatwe and oxyluciferyl-adenylate, J. Biol. Chem., 1958, 233, 1528–1537.

    Article  CAS  Google Scholar 

  32. E. H. White, E. Rapaport, H. H. Seliger and T. A. Hopkins, The chemi- and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states, Bioorg. Chem., 1971, 1, 92–122.

    Article  CAS  Google Scholar 

  33. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, H. Boije and S. E. Fleet, A mutagenesis study of the putative luciferin binding site residues of firefly luciferase, Biochemistry, 2003, 42, 10429–10436.

    Article  CAS  Google Scholar 

  34. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, S. R. Wilkinson, N. F. Khattak, J. C. Rosenberg and M. Zimmer, Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain, Biochemistry, 2005, 44, 1385–1393.

    Article  CAS  Google Scholar 

  35. B. R. Branchini, C. E. Behney, T. L. Southworth, D. M. Fontaine, A. M. Gulick, D. J. Vinyard and G. W. Brudvig, Experimental Support for a Single Electron-Transfer Oxidation Mechanism in Firefly Bioluminescence, Am. Chem. Soc., 2015, 137(24), 7592–7595.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. T. Murakami or V. R. Viviani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, R.A., Santos, C.R., Kato, D.I. et al. The dark and bright sides of an enzyme: a three dimensional structure of the N-terminal domain of Zophobas morio luciferase-like enzyme, inferences on the biological function and origin of oxygenase/luciferase activity. Photochem Photobiol Sci 15, 654–665 (2016). https://doi.org/10.1039/c6pp00017g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00017g

Navigation