Skip to main content
Log in

Enhancing the photostability of poly(phenylene ethynylene) for single particle studies

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Single molecule fluorescence (SMF) studies on conjugated polymers yield enhanced information on exciton dynamics and on the interplay between polymer conformation/morphology and photophysical behavior. SMF studies, however, demand good signal stability, excellent photostability, and high photon yields (a measure of both photostability and brightness) and thus the development of strategies to help conjugated polymers (CPs) meet these requirements is a topic of great interest. Here, we evaluate the effect of a number of triplet quencher additives on the photostability of a 49-mer long poly(phenylene-ethynylene) conjugated polymer bearing carboxylate side groups (PPE-CO2-49) that is deposited onto 100 nm diameter SiO2 nanoparticles (NPs). The additives tested include ascorbic acid (AA), β-mercaptoethanol (BME), Ni2+, trolox (TX), and a trolox/trolox quinone mixture (TX/TQ), used either with or without an enzymatic oxygen scavenging system (glucose oxidase/catalase, GODCAT). Total internal reflection fluorescence microscopy (TIRFM) studies enabled the determination of the effect of the additives on the rates of photobleaching, the initial intensity, and the total photon output for hundreds of conjugated polymer coated SiO2 nanoparticles monitored in parallel. Addition of the antioxidant/triplet quenchers AA and TX led to a 3-8-fold increase in the number of photons collected as well as an enhancement of the initial emission intensity, consistent with an increase in the duty cycle attributed to the quenching of triplet states. Removal of oxygen led to an impressive 10-15-fold increase in the photostability relative to buffer, implicating reactive oxygen species (ROS) as an important agent in the photo-degradation of PPE-CO2-49. Combining AA and TX with GODCAT had a deleterious rather than an additive effect, suggesting that an oxidizing agent is in fact necessary to rescue the polymer from reactive intermediates formed via reaction with AA/TX. β-Mercaptoethanol and Ni2+ were not found to have useful properties toward the photostabilization of PPE-CO2-49. The results of this study provide suitable imaging conditions to conduct single molecule imaging experiments on conjugated polyelectrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. V. Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager and P. F. Barbara, Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules, Science, 1997, 277, 1074–1077.

    Article  Google Scholar 

  2. C. Wu, B. Bull, C. Szymanski, K. Christensen and J. McNeill, Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging, ACS Nano, 2008, 2, 2415–2423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Yu, D. Hu and P. F. Barbara, Unmasking Electronic Energy Transfer of Conjugated Polymers by Suppression of O2 Quenching, Science, 2000, 289, 1327–1330.

    Article  CAS  PubMed  Google Scholar 

  4. C. F. Calver, H.-W. Liu and G. Cosa, Exploiting Conjugated Polyelectrolyte Photophysics toward Monitoring Real-Time Lipid Membrane-Surface Interaction Dynamics at the Single-Particle Level, Langmuir, 2015, 31, 11842–11850.

    Article  CAS  PubMed  Google Scholar 

  5. P. Karam, A. T. Ngo, I. Rouiller and G. Cosa, Unraveling Electronic Energy Transfer in Single Conjugated Polyelectrolytes Encapsulated in Lipid Vesicles, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 17480–17485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P. A. Dalgarno, C. A. Traina, J. C. Penedo, G. C. Bazan and I. D. W. Samuel, Solution-Based Single Molecule Imaging of Surface-Immobilized Conjugated Polymers, J. Am. Chem. Soc., 2013, 135, 7187–7193.

    Article  CAS  PubMed  Google Scholar 

  7. H.-W. Liu, A. T. Ngo and G. Cosa, Enhancing the Emissive Properties of Poly(p-phenylenevinylene)-Conjugated Polyelectrolyte-Coated SiO2 Nanoparticles, J. Am. Chem. Soc., 2011, 134, 1648–1652.

    Article  CAS  Google Scholar 

  8. C. Wu, C. Szymanski, Z. Cain and J. McNeill, Conjugated Polymer Dots for Multiphoton Fluorescence Imaging, J. Am. Chem. Soc., 2007, 129, 12904–12905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. H. Darwish and P. Karam, Nanohybrid Conjugated Polyelectrolytes: Highly Photostable and Ultrabright Nanoparticles, Nanoscale, 2015, 7, 15149–15158.

    Article  CAS  PubMed  Google Scholar 

  10. K.-Y. Pu and B. Liu, Fluorescent Conjugated Polyelectrolytes for Bioimaging, Adv. Funct. Mater., 2011, 21, 3408–3423.

    Article  CAS  Google Scholar 

  11. M. Sun, B. Sun, Y. Liu, Q.-D. Shen and S. Jiang, Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes, Sci. Rep., 2016, 6, 22368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Liu, P. Wu, J. Jiang, J. Wu, Y. Chen, Y. Tan, C. Tan and Y. Jiang, Conjugated Polyelectrolyte Nanoparticles for Apoptotic Cell Imaging, ACS Appl. Mater. Interfaces, 2016, 8, 21984–21989.

    Article  CAS  PubMed  Google Scholar 

  13. Z. Kahveci, R. Vázquez-Guilló, M. J. Martínez-Tomé, R. Mallavia and C. R. Mateo, New Red-Emitting Conjugated Polyelectrolyte: Stabilization by Interaction with Biomolecules and Potential Use as Drug Carriers and Bioimaging Probes, ACS Appl. Mater. Interfaces, 2016, 8, 1958–1969.

    Article  CAS  PubMed  Google Scholar 

  14. A. I. Shames, L. N. Inasaridze, A. V. Akkuratov, A. E. Goryachev, E. A. Katz and P. A. Troshin, Assessing the Outdoor Photochemical Stability of Conjugated Polymers by EPR Spectroscopy, J. Mater. Chem. A, 2016, 4, 13166–13170.

    Article  CAS  Google Scholar 

  15. H. Neugebauer, C. Brabec, J. C. Hummelen and N. S. Sariciftci, Stability and Photodegradation Mechanisms of Conjugated Polymer/Fullerene Plastic Solar Cells, Sol. Energy Mater. Sol. Cells, 2000, 61, 35–42.

    Article  CAS  Google Scholar 

  16. M. Jorgensen, K. Norrman and F. C. Krebs, Stability/ Degradation of Polymer Solar Cells, Sol. Energy Mater. Sol. Cells, 2008, 92, 686–714.

    Article  CAS  Google Scholar 

  17. H. D. Burrows, J. de Seixas Melo, C. Serpa, L. G. Arnaut, A. P. Monkman, I. Hamblett and S. Navaratnam, S1~>T1 Intersystem Crossing in n-Conjugated Organic Polymers, J. Chem. Phys., 2001, 115, 9601–9606.

    Article  CAS  Google Scholar 

  18. R. D. Scurlock, B. Wang, P. R. Ogilby, J. R. Sheats and R. L. Clough, Singlet Oxygen as a Reactive Intermediate in the Photodegradation of an Electroluminescent Polymer, J. Am. Chem. Soc., 1995, 117, 10194–10202.

    Article  CAS  Google Scholar 

  19. P. R. Ogilby, Singlet Oxygen: There is Indeed Something New Under the Sun, Chem. Soc. Rev., 2010, 39, 3181–3209.

    Article  CAS  Google Scholar 

  20. E. J. W. List, R. Guentner, P. de Scanducci Freitas and U. Scherf, The Effect of Keto Defect Sites on the Emission Properties of Polyfluorene-Type Materials, Adv. Mater., 2002, 14, 374–378.

    Article  CAS  Google Scholar 

  21. A. P. Kulkarni, X. Kong and S. A. Jenekhe, Fluorenone-Containing Polyfluorenes and Oligofluorenes: Photophysics, Origin of the Green Emission and Efficient Green Electroluminescence, J. Phys. Chem. B, 2004, 108, 8689–8701.

    Article  CAS  Google Scholar 

  22. L. Romaner, A. Pogantsch, P. de Scandiucci Freitas, U. Scherf, M. Gaal, E. Zojer and E. J. W. List, The Origin of Green Emission in Polyfluorene-Based Conjugated Polymers: On-Chain Defect Fluorescence, Adv. Funct. Mater., 2003, 13, 597–601.

    Article  CAS  Google Scholar 

  23. R. E. Palacios, F.-R. F. Fan, J. K. Grey, J. Suk, A. J. Bard and P. F. Barbara, Charging and Discharging of Single Conjugated-Polymer Nanoparticles, Nat. Mater., 2007, 6, 680–685.

    Article  CAS  PubMed  Google Scholar 

  24. J. C. Bolinger, M. C. Traub, T. Adachi and P. F. Barbara, Ultralong-Range Polaron-Induced Quenching of Excitons in Isolated Conjugated Polymers, Science, 2011, 331, 565–567.

    Article  CAS  PubMed  Google Scholar 

  25. J. Yu, N. W. Song, J. D. McNeill and P. F. Barbara, Efficient Exciton Quenching by Hole Polarons in the Conjugated Polymer MEH-PPV, Isr. J. Chem., 2004, 44, 127–132.

    Article  CAS  Google Scholar 

  26. J. Yu, C. Wu, Z. Tian and J. McNeill, Tracking of Single Charge Carriers in a Conjugated Polymer Nanoparticle, Nano Lett., 2012, 12, 1300–1306.

    Article  CAS  PubMed  Google Scholar 

  27. T. L. Andrew and T. M. Swager, Reduced Photobleaching of Conjugated Polymer Films through Small Molecule Additives, Macromolecules, 2008, 41, 8306–8308.

    Article  CAS  Google Scholar 

  28. Z. Tian, J. Yu, X. Wang, L. C. Groff, J. L. Grimland and J. D. McNeill, Conjugated Polymer Nanoparticles Incorporating Antifade Additives for Improved Brightness and Photostability, J. Phys. Chem. B, 2013, 117, 4517–4520.

    Article  CAS  PubMed  Google Scholar 

  29. A. T. Ngo, K. L. Lau, J. S. Quesnel, R. Aboukhalil and G. Cosa, Deposition of Anionic Conjugated Poly(phenylene- vinylene) onto Silica Nanoparticles via Electrostatic Interactions—Assembly and Single-Particle Spectroscopy, Can. J. Chem., 2011, 89, 385–394.

    Article  CAS  Google Scholar 

  30. X. Zhao, H. Jiang and K. S. Schanze, Polymer Chain Length Dependence of Amplified Fluorescence Quenching in Conjugated Polyelectrolytes, Macromolecules, 2008, 41, 3422–3428.

    Article  CAS  Google Scholar 

  31. J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer and P. Tinnefeld, A Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes, Angew. Chem., Int. Ed., 2008, 47, 5465–5469.

    Article  CAS  Google Scholar 

  32. I. Rasnik, S. A. McKinney and T. Ha, Nonblinking and Long-Lasting Single-Molecule Fluorescence Imaging, Nat. Methods, 2006, 3, 891–893.

    Article  CAS  PubMed  Google Scholar 

  33. P. Holzmeister, A. Gietl and P. Tinnefeld, Geminate Recombination as a Photoprotection Mechanism for Fluorescent Dyes, Angew. Chem., Int. Ed., 2014, 53, 5685–5688.

    Article  CAS  Google Scholar 

  34. Y. Harada, K. Sakurada, T. Aoki, D. D. Thomas and T. Yanagida, Mechanochemical Coupling in Actomyosin Energy Transduction Studied by in vitro Movement Assay, J. Mol. Biol., 1990, 216, 49–68.

    Article  CAS  PubMed  Google Scholar 

  35. V. Glembockyte, J. Lin and G. Cosa, Improving the Photostability of Red- and Green-Emissive Single-Molecule Fluorophores via Ni2+ Mediated Excited Triplet-State Quenching, J. Phys. Chem. B, 2016, 120, 11923–11929.

    Article  CAS  PubMed  Google Scholar 

  36. V. Glembockyte, R. Lincoln and G. Cosa, Cy3 Photoprotection Mediated by Ni2+ for Extended Single-Molecule Imaging: Old Tricks for New Techniques, J. Am. Chem. Soc., 2015, 137, 1116–1122.

    Article  CAS  PubMed  Google Scholar 

  37. T. Cordes, J. Vogelsang and P. Tinnefeld, On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent, J. Am. Chem. Soc., 2009, 131, 5018–5019.

    Article  CAS  PubMed  Google Scholar 

  38. C. Joo and T. Ha, Imaging and Identifying Impurities in Single-Molecule FRET Studies, Cold Spring Harb. Protoc., 2012, 10, 1109–1112.

    Google Scholar 

  39. R. Roy, S. Hohng and T. Ha, A Practical Guide to Single-Molecule FRET, Nat. Methods, 2008, 5, 507–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. B. J. Schwartz, Conjugated Polymers as Molecular Materials: How Chain Conformation and Film Morphology Influence Energy Transfer and Interchain Interactions, Annu. Rev. Phys. Chem., 2003, 54, 141–172.

    Article  CAS  PubMed  Google Scholar 

  41. G. D. Scholes and G. Rumbles, Excitons in Nanoscale Systems, Nat. Mater., 2006, 5, 683–696.

    Article  CAS  PubMed  Google Scholar 

  42. J. C. Bolinger, M. C. Traub, J. Brazard, T. Adachi, P. F. Barbara and D. A. Vanden Bout, Conformation and Energy Transfer in Single Conjugated Polymers, Acc. Chem. Res., 2012, 45, 1992–2001.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Ebihara and M. Vacha, Relating Conformation and Photophysics in Single MEH-PPV Chains, J. Phys. Chem. B, 2008, 112, 12575–12578.

    Article  CAS  PubMed  Google Scholar 

  44. T. Huser, M. Yan and L. J. Rothberg, Single Chain Spectroscopy of Conformational Dependence of Conjugated Polymer Photophysics, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 11187–11191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. P. Karam, A. A. Hariri, C. F. Calver, X. Zhao, K. S. Schanze and G. Cosa, Interaction of Anionic Phenylene Ethynylene Polymers with Lipids: From Membrane Embedding to Liposome Fusion, Langmuir, 2014, 30, 10704–10711.

    Article  CAS  PubMed  Google Scholar 

  46. J. Vogelsang, J. Brazard, T. Adachi, J. C. Bolinger and P. F. Barbara, Watching the Annealing Process One Polymer Chain at a Time, Angew. Chem., Int. Ed., 2011, 50, 2257–2261.

    Article  CAS  Google Scholar 

  47. D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky and P. F. Barbara, Collapse of Stiff Conjugated Polymers with Chemical Defects into Ordered, Cylindrical Conformations, Nature, 2000, 405, 1030–1033.

    Article  CAS  PubMed  Google Scholar 

  48. J. M. Lupton, Single-Molecule Spectroscopy for Plastic Electronics: Materials Analysis from the Bottom-Up, Adv. Mater., 2010, 22, 1689–1721.

    Article  CAS  PubMed  Google Scholar 

  49. J. Vogelsang and J. M. Lupton, Solvent Vapor Annealing of Single Conjugated Polymer Chains: Building Organic Optoelectronic Materials from the Bottom Up, J. Phys. Chem. Lett., 2012, 3, 1503–1513.

    Article  CAS  PubMed  Google Scholar 

  50. S.-J. Park, A. J. Gesquiere, J. Yu and P. F. Barbara, Charge Injection and Photooxidation of Single Conjugated Polymer Molecules, J. Am. Chem. Soc., 2004, 126, 4116–4117.

    Article  CAS  PubMed  Google Scholar 

  51. P. F. Barbara, A. J. Gesquiere, S.-J. Park and Y. J. Lee, Single-Molecule Spectroscopy of Conjugated Polymers, Acc. Chem. Res., 2005, 38, 602–610.

    Article  CAS  PubMed  Google Scholar 

  52. S. J. Atherton and P. C. Beaumont, Quenching of the Fluorescence of DNA-Intercalated Ethidium Bromide by some Transition-Metal Ions, J. Phys. Chem., 1986, 90, 2252–2259.

    Article  CAS  Google Scholar 

  53. H. Jiang, X. Zhao and K. S. Schanze, Amplified Fluorescence Quenching of a Conjugated Polyelectrolyte Mediated by Ca2+, Langmuir, 2006, 22, 5541–5543.

    Article  CAS  PubMed  Google Scholar 

  54. Q. Zheng, M. F. Juette, S. Jockusch, M. R. Wasserman, Z. Zhou, R. B. Altman and S. C. Blanchard, Ultra-Stable Organic Fluorophores for Single-Molecule Research, Chem. Soc. Rev., 2014, 43, 1044–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates and X. Zhuang, Evaluation of Fluorophores for Optimal Performance in Localization-Based Super-Resolution Imaging, Nat. Methods, 2011, 8, 1027–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G. C. is thankful to the National Science and Engineering Research Council of Canada (NSERC) and Canada Foundation for Innovation (CFI). K. S. S. acknowledges the Welch foundation for support. We are thankful to X. Zhao for synthesis of the PPE-CO2-49 polymer, and to Michael Menni and Hsiao-Wei Liu for writing the first version of the analysis routine and for later discussions on its modification. We are also thankful to NSERC for a Graduate Scholarship to C. F. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calver, C.F., Lago, B.A., Schanze, K.S. et al. Enhancing the photostability of poly(phenylene ethynylene) for single particle studies. Photochem Photobiol Sci 16, 1821–1831 (2017). https://doi.org/10.1039/c7pp00276a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00276a

Navigation