Skip to main content
Log in

Photocyclization of diarylethenes: the effect of imidazole on the oxidative photodegradation process

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We have studied the photoreaction of 1,2-diarylethenes under aerobic conditions in the presence of various amines to prevent side processes promoted by singlet oxygen. It has been found that the most amines quite effectively deactivate processes associated with singlet oxygen, but primary and secondary amines unlike tertiary ones, react with substrates resulting in various side products. Among the studied amines, the most effective additive for preventing side processes, including those associated with singlet oxygen is imidazole, which is practically not consumed in photoreaction. It was shown that imidazole can also prevents the photodegradation of organic photochromes in solutions. The results obtained can be used in various branches of science, technology and medicine to improve the photostability of photosensitive organics (dyes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. W. Horspool and F. Lenci, CRC Handbook of Organic Photochemistry and Photobiology, CRC Press, Boca Raton FL, 2nd edn, 2004.

  2. H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems, Elsevier, Amsterdam, 2003.

  3. A. Albini and M. Fagnoni, Handbook of Synthetic Photochemistry, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

  4. B. Wardle, Principles and applications of photochemistry, John Wiley & Sons, Ltd, 2009.

  5. (a) M. Zamadar and A. Greer, Singlet Oxygen as a Reagent in Organic Synthesis in Handbook of Synthetic Photochemistry, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010; (b) A. A. Ghogare and A. Greer, Using Singlet Oxygen to Synthesize Natural Products and Drugs, Chem. Rev., 2016, 116, 9994–10034, DOI: 10.1021/acs.chemrev.5b00726.

    Article  Google Scholar 

  6. G. Laustriat, Molecular mechanisms of photosensitization, Biochimie, 1986, 68, 771–778, DOI: 10.1016/S0300-9084(86) 80092-X.

    Article  CAS  Google Scholar 

  7. (a) S. Fredrich, R. Göstl, M. Herder, L. Grubert and S. Hecht, Switching Diarylethenes Reliably in Both Directions with Visible Light, Angew. Chem., Int. Ed., 2016, 55, 1208–1212, DOI: 10.1002/anie.201509875; (b) L. Hou, X. Zhang, T. C. Pijper, W. R. Browne and B. L. Feringa, Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches, J. Am. Chem. Soc., 2014, 136, 910–913, DOI: 10.1021/ja4122473.

    Article  CAS  Google Scholar 

  8. (a) C. Salemi-Delvaux, B. Luccione-Houze, G. Baillet, G. Giusti and R. Guglielmetti, Photooxygenation of α,α′-dimethylstilbenes sensitised by photochromic compounds, Tetrahedron Lett., 1996, 37, 5127–5130, DOI: 10.1016/0040-4039(96)01066-0; (b) J. Ji, X. Li, T. Wu and F. Feng, Spiropyran in nanoassemblies as a photosensitizer for photoswitchable ROS generation in living cells, Chem. Sci., 2018, 9, 5816–5821, DOI: 10.1039/C8SC01148F; (c) S. Silvi, E. C. Constable, C. E. Housecroft, J. E. Beves, E. L. Dunphy, M. Tomasulo, F. M. Raymo and A. Credi, Photochemical switching of luminescence and singlet oxygen generation by chemical signal communication, Chem. Commun., 2009, 1484–1486, DOI: 10.1039/B900712A.

    Article  CAS  Google Scholar 

  9. (a) M. C. Palumbo, N. A. Garcia and G. A. Arguello, The interaction of singlet molecular oxygen O2(1g) with indolic derivatives. Distinction between physical and reactive quenching, J. Photochem. Photobiol., B, 1990, 7, 33–42, DOI: 10.1016/1011-1344(90)85141-I; (b) N. H. Martin, N. W. Allen III, C. A. Cottle and C. K. Marschke Jr., Semiempirical molecular orbital calculations on the interaction between singlet oxygen and amines: modeling charge transfer quenching, J. Photochem. Photobiol., A, 1997, 103, 33–38, DOI: 10.1016/S1010-6030(97)85299-9; (c) A. P. Darmanyan, D. D. Gregory, Y. Guo, W. S. Jenks, L. Burel, D. Eloy and P. Jardon, Quenching of Singlet Oxygen by Oxygen- and Sulfur-Centered Radicals: Evidence for Energy Transfer to Peroxyl Radicals in Solution, J. Am. Chem. Soc., 1998, 120, 396–403, DOI: 10.1021/ja9730831; (d) S. Nagai, K. Ohara and K. Mukai, Kinetic Study of the Quenching Reaction of Singlet Oxygen by Flavonoids in Ethanol Solution, J. Phys. Chem. B, 2005, 109, 4234–4240, DOI: 10.1021/jp0451389; (e) B. M. Monroe, Quenching of singlet oxygen by aliphatic amines, J. Phys. Chem., 1977, 81, 1861–1864. https://pubs.acs.org/doi/abs/10.1021/j100534a016? source=chemport&journalCode=jpchax(f) E. L. Clennan, D. Wang, C. Clifton and M.-F. Chen, Geometry-Dependent Quenching of Singlet Oxygen by Dialkyl Disulfides, J. Am. Chem. Soc., 1997, 119, 9081–9082, DOI: 10.1021/ja9720568; (g) R. A. Larson and K. A. Marley, Quenching of singlet oxygen by alkaloids and related nitrogen heterocycles, Phytochemistry, 1984, 23, 2351–2354, DOI: 10.1016/S0031-9422(00)80550-6; (h) M. L. Dántola, A. H. Thomas, A. M. Braun, E. Oliveros and C. Lorente, Singlet Oxygen (O2(1Δg)) Quenching by Dihydropterins, J. Phys. Chem. A, 2007, 111, 4280–4288, DOI: 10.1021/jp071278h.

    Article  CAS  Google Scholar 

  10. A. G. Lvov, V. Z. Shirinian, V. V. Kachala, A. M. Kavun, I. V. Zavarzin and M. M. Krayushkin, Photoinduced Skeletal Rearrangement of Diarylethenes Comprising Oxazole and Phenyl Rings, Org. Lett., 2014, 16, 4532–4535, DOI: 10.1021/ol502073t.

    Article  CAS  Google Scholar 

  11. (a) A. G. Lvov, V. Z. Shirinian, A. V. Zakharov, M. M. Krayushkin, V. V. Kachala and I. V. Zavarzin, General Photoinduced Sequential Electrocyclization/[1,9]-Sigmatropic Rearrangement/Ring-Opening Reaction of Diarylethenes, J. Org. Chem., 2015, 80, 11491–11500, DOI: 10.1021/acs.joc.5b02237; (b) A. V. Zakharov, E. B. Gaeva, A. G. Lvov, A. V. Metelitsa and V. Z. Shirinian, Photochemical Rearrangement of Diarylethenes: Reaction Efficiency and Substituent Effects, J. Org. Chem., 2017, 82, 8651–8661, DOI: 10.1021/acs.joc.7b01587.

    Article  CAS  Google Scholar 

  12. A. G. Lvov and V. Z. Shirinyan, Photoinduced Rearrangements of Diarylethenes, Chem. Heterocycl. Compd., 2016, 52, 658–665, DOI: 10.1007/s10593-016-1946-z.

    Article  CAS  Google Scholar 

  13. (a) H. H. Wasserman, F. J. Vinick and Y. C. Chang, Reaction of oxazoles with singlet oxygen. Mechanism of the rearrangement of triamides, J. Am. Chem. Soc., 1972, 94, 7180–7182, DOI: 10.1021/ja00775a068; (b) K. Gollnick and S. Koegler, (4+2)-cycloaddition of singlet oxygen to oxazoles formation of oxazole endoperoxides, Tetrahedron Lett., 1988, 29, 1003–1006, DOI: 10.1016/0040-4039(88) 85319-X; (c) H. H. Wasserman, J. E. Pickett and F. S. Vinnick, Intermediates in the Reactions of Oxazoles with Singlet Oxygen, Heterocycles, 1981, 15, 1069–1073, DOI: 10.3987/S-1981-02-1069; (d) M. L. Graziano, M. R. Iesce, G. Cimminiello, R. Scarpati and M. Parrilli, Dioxazole and dioxetane intermediates in the thermal rearrangement of endo-peroxides obtained by dye-sensitized photo-oxygenation of 2-alkoxyoxazoles, J. Chem. Soc., Perkin Trans. 1, 1990, 1011–1017, DOI: 10.1039/P19900001011; (e) M. R. Iesce, M. L. Graziano, G. Cimminiello, F. Cermola, M. Parrilli and R. Scarpati, Route of triacylamine formation in the thermal conversion of 2,3,7-trioxa-5-azabicyclo[2.2.1]hept-5-enes investigated by nuclear magnetic resonance experiments, J. Chem. Soc., Perkin Trans. 2, 1991, 1085–1089, DOI: 10.1039/P29910001085.

    Article  CAS  Google Scholar 

  14. (a) B. L. Feringa, Photo-oxidation of furans, Recl. Trav. Chim. Pays-Bas, 1987, 106, 469–488, DOI: 10.1002/recl.19871060902; (b) M. Tomita, M. Irie and T. Ukita, Sensitized photooxidation of N-benzoyl histidine, Tetrahedron Lett., 1968, 9, 4933–4936, DOI: 10.1016/S0040-4039(00)72795-X; (c) K. Gollnick and A. Griesbeck, Singlet oxygen photooxygenation of furans: Isolation and reactions of (4 + 2)-cycloaddition products (unsaturated sec.-ozonides), Tetrahedron, 1985, 41, 2057–2068, DOI: 10.1016/S0040-4020(01)96576-7; (d) C. N. Skold and R. H. Schlessinger, The reaction of singlet oxygen with a simple thiophene, Tetrahedron Lett., 1970, 11, 791–794, DOI: 10.1016/S0040-4039(01)97831-1; (e) K. Gollnick and A. Griesbeck, Thiaozonide formation by singlet oxygen cycloaddition to 2,5-dimethylthiophene, Tetrahedron Lett., 1984, 25, 4921–4924, DOI: 10.1016/S0040-4039(01)91259-6; (f ) X. Song, M. G. Fanelli, J. M. Cook, F. Bai and C. A. Parish, Mechanisms for the Reaction of Thiophene and Methylthiophene with Singlet and Triplet Molecular Oxygen, J. Phys. Chem. A, 2012, 116, 4934–4946, DOI: 10.1021/jp301919g; (g) L. Wu, T. Y. Hong and F. G. Vogt, Structural analysis of photo-degradation in thiazole-containing compounds by LC–MS/MS and NMR, J. Pharm. Biomed. Anal., 2007, 44, 763–772, DOI: 10.1016/j. jpba.2007.02.037.

    Article  CAS  Google Scholar 

  15. P. Kang and C. S. Foote, Photosensitized Oxidation of 13C,15N-Labeled Imidazole Derivatives, J. Am. Chem. Soc., 2002, 124, 9629–9638, DOI: 10.1021/ja012253d.

    Article  CAS  Google Scholar 

  16. (a) T. Montagnon, M. Tofi and G. Vassilikogiannakis, Using Singlet Oxygen to Synthesize Polyoxygenated Natural Products from Furans, Acc. Chem. Res., 2008, 41, 1001–1011, DOI: 10.1021/ar800023v; (b) K. Gollnick and A. Griesbeck, [4+2]-Cycloaddition von Singulett-Sauerstoff an 2,5-Dimethylfuran: Isolierung und Reaktionen des monomeren und dimeren Endoperoxids, Angew. Chem., Int. Ed., 1983, 95, 751–751, DOI: 10.1002/ange.19830950927; (c) M. L. Graziano, M. R. Lesce and R. Scarpati, Photosensitized oxidation of furans. Part 4. Influence of the substituents on the behaviour of the endo-peroxides of furans, J. Chem. Soc., Perkin Trans. 1, 1982, 2007–2012, DOI: 10.1039/P19820002007.

    Article  CAS  Google Scholar 

  17. (a) M. Irie, T. Fukaminato, K. Matsuda and S. Kobatake, Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators, Chem. Rev., 2014, 114, 12174–12277, DOI: 10.1021/cr500249p; (b) A. G. Lvov, M. M. Khusniyarov and V. Z. Shirinian, Azole-based diarylethenes as the next step towards advanced photochromic materials, J. Photochem. Photobiol., C, 2018, 36, 1–23, DOI: 10.1016/j. jphotochemrev.2018.04.002.

    CAS  Google Scholar 

  18. (a) C. Salemi, G. Giusti and R. Guglielmetti, DABCO effect on the photodegradation of photochromic compounds in spiro[indoline-pyran] and spiro[indoline-oxazine] series, J. Photochem. Photobiol., A, 1995, 86, 247–252, DOI: 10.1016/1010-6030(94)03926-L; (b) D. Eloy, C. Gay and P. Jardon, Étude sur le mécanisme de la photodégradation d’une spirooxazine Effets du solvant, de l’oxygène, du DABCO et de la photosensibilisation, J. Chim. Phys. Phys.-Chim. Biol., 1997, 94, 683–706, DOI: 10.1051/jcp/1997940683.

    Article  CAS  Google Scholar 

  19. (a) V. Malatesta, Degradation of Organic Photochromes: Light-Promoted and Dark Reactions, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 1997, 298, 69–74, DOI: 10.1080/10587259708036144; (b) V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus and S. Monti, Oxidative degradation of organic photochromes, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 1994, 246, 303–310, DOI: 10.1080/10587259408037833; (c) A. A. Firth, D. J. McGarvey and T. G. Truscott, Photochemical Properties of Spirooxazines, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 1994, 246, 295–298, DOI: 10.1080/10587259408037831; (d) H. Gorner, Photochemical ring opening in nitrospiropyrans: triplet pathway and the role of singlet molecular oxygen, Chem. Phys. Lett., 1998, 282, 381–390, DOI: 10.1016/S0009-2614 (97)01256-6.

    Article  Google Scholar 

  20. H.-h. Liu and Y. Chen, Selective photoconversion of photochromic diarylethenes and their properties, New J. Chem., 2012, 36, 2223–2227, DOI: 10.1039/C2NJ40377C.

    Article  CAS  Google Scholar 

  21. K. Higashiguchi, K. Matsuda, T. Yamada, T. Kawai and M. Irie, Fatigue Mechanism of Photochromic 1,2-Bis(3-thienyl)perfluorocyclopentene, Chem. Lett., 2000, 29, 1358–1359, DOI: 10.1246/cl.2000.1358.

    Article  Google Scholar 

  22. M. Herder, B. M. Schmidt, L. Grubert, M. Pat¨zel, J. Schwarz and S. Hecht, Improving the Fatigue Resistance of Diarylethene Switches, J. Am. Chem. Soc., 2015, 137, 2738–2747, DOI: 10.1021/ja513027s.

    Article  CAS  Google Scholar 

  23. A. V. Chernyshev, N. A. Voloshin, A. V. Metelitsa, V. V. Tkachev, S. M. Aldoshin, E. Solov’eva, I. A. Rostovtseva and V. I. Minkin, Metal complexes of new photochromic chelator: Structure, stability and photodissociation, J. Photochem. Photobiol., A, 2013, 265, 1–9 https://www.sciencedirect.com/science/article/pii/S1010603013001913.

  24. M. M. Krayushkin, D. V. Pashchenko, B. V. Lichitskii, T. M. Valova, Yu. P. Strokach and V. A. Barachevskii, Synthesis and properties of dihetaryl-substituted furanones. Synthesis of photochromic dithienylethenes containing a furanone bridging fragment, Russ. J. Org. Chem., 2006, 42, 1816–1821 https://link.springer.com/article/10.1134/S1070428006120104.

  25. E. M. Glebov, N. V. Ruban, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, A. G. Lvov, A. V. Zakharov and V. Z. Shirinian, Mechanistic Aspects of Photoinduced Rearrangement of 2,3-Diarylcyclopentenone Bearing Benzene and Oxazole Moieties, J. Phys. Chem. A, 2018, 122, 7107–7117, DOI: 10.1021/acs.jpca.8b05212.

    Article  CAS  Google Scholar 

  26. M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233234, 351–371, DOI: 10.1016/S0010-8545(02)00034-6.

  27. (a) F. Wilkinson and A. A. Abdel-Shafi, Mechanism of Quenching of Triplet States by Molecular Oxygen: Biphenyl Derivatives in Different Solvents, J. Phys. Chem. A, 1999, 103, 5425–5435, DOI: 10.1021/jp9907995; (b) D. J. McGarvey, P. G. Szekeres and F. Wilkinson, The efficiency of singlet oxygen generation by substituted naphthalenes in benzene. Evidence for the participation of charge-transfer interactions, Chem. Phys. Lett., 1992, 199, 314–319, DOI: 10.1016/0009-2614(92)80124-T; (c) C. Grewer and H.-D. Brauer, Mechanism of the Triplet-State Quenching by Molecular Oxygen in Solution, J. Phys. Chem., 1994, 98, 4230–4235, DOI: 10.1021/j100067a006; (d) A. F. Olea and F. Wilkinson, Singlet Oxygen Production from Excited Singlet and Triplet States of Anthracene Derivatives in Acetonitrile, J. Phys. Chem., 1995, 99, 4518–4524, DOI: 10.1021/j100013a022.

    Article  CAS  Google Scholar 

  28. (a) J. N. Pitts Jr., D. Grosjean, K. Van Cauwenberghe, J. P. Schmid and D. R. Fitz, Photooxidation of aliphatic amines under simulated atmospheric conditions: formation of nitrosamines, nitramines, amides, and photochemical oxidant, Environ. Sci. Technol., 1978, 12, 946–953, DOI: 10.1021/es60144a009; (b) G. O. Schenck, Aufgaben und Möglichkeiten der präparativen Strahlenchemie, Angew. Chem., 1957, 69, 579–599, DOI: 10.1002/ange.19570691802; (c) R. H. Young, R. H. Martin, D. Feriozi, D. Brewer and R. Kayser, On the mechanism of quenching of singlet oxygen by amines–III. Evidence for a charge-transfer-like complex, Photochem. Photobiol., 1973, 17, 233–244, DOI: 10.1111/j.1751-1097.1973.tb06352.x.

    Article  Google Scholar 

  29. (a) U. T. Bhalerao and M. Sridhar, Methoxylated benzene sensitized photoformylation of aliphatic primary and secondary amines, J. Chem. Soc., Chem. Commun., 1993, 115–116, DOI: 10.1039/C39930000115; (b) D. F. Zigler, E. C. Ding, L. E. Jarocha, R. R. Khatmullin, V. M. DiPasquale, R. B. Sykes, V. F. Tarasov and M. D. E. Forbes, Kinetic analysis of nitroxide radical formation under oxygenated photolysis: toward quantitative singlet oxygen topology, Photochem. Photobiol. Sci., 2014, 13, 1804–1811, DOI: 10.1039/C4PP00318G.

    Google Scholar 

  30. For example of irreversible photoreactions of diarylethenes in the presence of amines see: S. Fredrich, A. Bonasera, V. Valderrey and S. Hecht, Sensitive Assays by Nucleophile-Induced Rearrangement of Photoactivated Diarylethenes, J. Am. Chem. Soc., 2018, 140, 6432–6440, DOI: 10.1021/jacs.8b02982.

    Article  CAS  Google Scholar 

  31. R. S. Davidson and K. R. Trethewey, Photosensitised oxidation of amines: mechanism of oxidation of triethylamine, J. Chem. Soc., Perkin Trans. 2, 1977, 173–178, DOI: 10.1039/P29770000173.

  32. H. P. Kokatla, P. F. Thomson, S. Bae, V. R. Doddi and M. K. Lakshman, Reduction of Amine N-Oxides by Diboron Reagents, J. Org. Chem., 2011, 76, 7842–7848, DOI: 10.1021/jo201192c.

    Article  CAS  Google Scholar 

  33. P. W. Moore, Y. Jiao, P. M. Mirzayans, L. N. Q. Sheng, J. P. Hooker and C. M. Williams, Selectivity Modulation of the Ley–Griffith TPAP Oxidation with N-Oxide Salts, Eur. J. Org. Chem., 2016, 3401–3407, DOI: 10.1002/ejoc.201600453.

  34. H. H. Wasserman, K. Stiller and M. B. Floyd, The reactions of heterocyclic systems with singlet oxygen. Photosensitized oxygenation of imidazoles, Tetrahedron Lett., 1968, 9, 3277–3280 https://www.sciencedirect.com/science/article/pii/S0040403900895465.

  35. J. C. Crano and R. Guglielmetti, Organic Photochromic and Thermochromic Compounds, Kluwer Academic Publishers, New York, 2002.

  36. (a) B. L. Feringa and W. R. Browne, Molecular Switches, Wiley-VCH Verlag GmbH & Co. KGaA, 2nd edn, 2011; (b) Y. Yokoyama and K. Nakatani, Photon-Working Switches, Springer, Tokyo, 2017.

  37. V. Malatesta, Photodegradation of Organic Photochromes in Organic Photochromic and Thermochromic Compounds, Kluwer Academic Publishers, New York, 2002.

  38. M. Irie, T. Lifka, K. Uchida, S. Kobatake and Y. Shindo, Fatigue resistant properties of photochromic dithienylethenes: by-product formation, Chem. Commun., 1999, 747–750, DOI: 10.1039/A809410A.

  39. (a) R. Demadrille, A. Rabourdin, M. Campredon and G. Giusti, Spectroscopic characterisation and photodegradation studies of photochromic spiro[fluorene-9,3′-[3′H]-naphtho[2,1-b]pyrans], J. Photochem. Photobiol., A, 2004, 168, 143–152, DOI: 10.1016/j.jphotochem.2004.05.009; (b) M. A. Salvador, P. J. Coelho, H. D. Burrows, M. M. Oliveira and L. M. Carvalho, Studies under Continuous Irradiation of Photochromic Spiro[fluorenopyran-thioxanthenes], Helv. Chim. Acta, 2004, 87, 1400–1410, DOI: 10.1002/hlca.200490128; (c) C. Salemi-Delvaux, B. Luccioni-Houze, G. Baillet, G. Giusti and R. Guglielmetti, Effect of photodegradation on the thermal bleaching rate constant of photochromic compounds in spiro[indoline-pyran] and spiro[indoline-oxazine] series, J. Photochem. Photobiol., A, 1995, 91, 223–232, DOI: 10.1016/1010-6030(95)04113-X; (d) V. Z. Shirinian, S. O. Besugliy, A. V. Metelitsa, M. M. Krayushkin, D. M. Nikalin and V. I. Minkin, Novel photochromic spirocyclic compounds of thienopyrroline series: 1: Spiropyrans, J. Photochem. Photobiol., A, 2007, 189, 161–166, DOI: 10.1016/j.jphotochem.2007.01.026.

    Article  CAS  Google Scholar 

  40. V. I. Minkin, Photo-, Thermo-, Solvato-, and Electrochromic Spiroheterocyclic Compounds, Chem. Rev., 2004, 104, 2751–2776, DOI: 10.1021/cr020088u.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Z. Shirinian.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00507a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, A.V., Lvov, A.G., Rostovtseva, I.A. et al. Photocyclization of diarylethenes: the effect of imidazole on the oxidative photodegradation process. Photochem Photobiol Sci 18, 1101–1109 (2019). https://doi.org/10.1039/c8pp00507a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00507a

Navigation