Skip to main content

Advertisement

Log in

Susceptibility of the cerebellum to thiamine deficiency

  • Review Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Thiamine or vitamin B1, an essential nutrient absorbed from the diet, is involved in vital brain metabolic and cellular functions, including carbohydrate metabolism and neurotransmitter production. Diencephalic regions and, in particular, the cerebellum demonstrate lesions in cases of prolonged thiamine deficiency, such as that observed in alcohol-dependent individuals or in patients with cancer or AIDS. The purpose of this review is to demonstrate recent evidence of cerebellar dysfunction resulting from thiamine deficiency and to assemble theories as to why the cerebellum may be sensitive to this type of insult. A brief outline on cerebellar structure and function, as well as a short discussion on thiamine and thiamine deficiency are provided before detailing the conditions and mechanisms underlying thiamine deficiency-induced cerebellar dysfunction. Although much is known regarding cell loss from a lack of thiamine, further work is still required to identify the sequelae of events leading to the susceptibility of the cerebellum to injury stemming from a thiamine deficient diet or impaired thiamine utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singleton CK, Martin PR. Molecular mechanisms of thiamine utilization. Curr Mol Med. 2001;1:197–207.

    Article  PubMed  CAS  Google Scholar 

  2. Martin PR, Singleton CK, Hiller-Sturmhofel S. The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Health. 2003;27:134–42.

    PubMed  Google Scholar 

  3. Thomson AD. Mechanisms of vitamin deficiency in chronic alcohol misusers and the development of the Wernicke-Korsakoff syndrome. Alcohol Alcohol Suppl. 2000;35:2–7.

    PubMed  CAS  Google Scholar 

  4. Butterworth RF. Effects of thiamine deficiency on brain metabolism: Implications for the pathogenesis of the Wernicke-Korsakoff syndrome. Alcohol Alcohol. 1989;24:271–9.

    PubMed  CAS  Google Scholar 

  5. Victor M, Adams RD, Collins GH. The Wernicke-Korsakoff syndrome and related neurologic disorders due to alcoholism and malnutrition. 2nd ed. Philadelphia, PA: FA Davis, 1989.

    Google Scholar 

  6. Harper CG, Butterworth RF. Nutritional and metabolic disorders. In: Graham DI, Lantos PL, editors. Greenfield’s Neuropathology. London: Arnold; 1997. pp 601–55.

    Google Scholar 

  7. Todd K, Butterworth RF. Mechanisms of selective neuronal cell death due to thiamine deficiency. Ann N Y Acad Sci. 1999;893:404–11.

    Article  PubMed  CAS  Google Scholar 

  8. Courchesne E, Townsend J, Akshoomoff NA, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994;108:848–65.

    Article  PubMed  CAS  Google Scholar 

  9. Schmahmann JD. Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    PubMed  Google Scholar 

  10. Nolte. The Human Brain. 3rd ed. St Louis: Mosby Year Book, 1999.

    Google Scholar 

  11. Andersen BB, Korbo L, Pakkenberg B. A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol. 1992;326:549–60.

    Article  PubMed  CAS  Google Scholar 

  12. Mayhew TM. Accurate prediction of Purkinje cell number from cerebellar weight can be achieved with the fractionator. J Comp Neurol. 1991;308:162–8.

    Article  PubMed  CAS  Google Scholar 

  13. Adeyinka AO, Akinyinka OO, Falade AG. Computerized tomography measures of brain slice area and ventricular sizes in protein energy malnutrition: A preliminary study. West Afr J Med. 1996;15:232–6.

    PubMed  CAS  Google Scholar 

  14. Kohn MR, Ashtari M, Golden NH, et al. Structural brain changes and malnutrition in anorexia nervosa. Ann N Y Acad Sci. 1997;28:398–9.

    Article  Google Scholar 

  15. Reuler JB, Girard DE, Cooney TG. Current concepts. Wernicke’s encephalopathy. N Engl J Med. 1985;312:1035–9.

    PubMed  CAS  Google Scholar 

  16. Ogershok PR, Rahman A, Nestor S, Brick J. Wernicke encephalopathy in nonalcoholic patients. Am J Med Sci. 2002;323:107–11.

    Article  PubMed  Google Scholar 

  17. Sullivan EV, Deshmukh A, Desmond JE, Lim KO, Pfefferbaum A. Cerebellar volume decline in normal aging, alcoholism, and Korsakoff’s syndrome: Relation to ataxia. Neuropsychology. 2000;14:341–52.

    Article  PubMed  CAS  Google Scholar 

  18. Alcaide ML, Jayaweera D, Espinoza L, Kolber M. Wernicke’s encephalopathy in AIDS: A preventable cause of fatal neurological deficit. Int J STD AIDS. 2003;14:712–13.

    Article  PubMed  CAS  Google Scholar 

  19. Chung TI, Kim JS, Park SK, Kim BS, Ahn KJ, Yang DW. Diffusion weighted MR imaging of acute Wernicke’s encephalopathy. Eur J Radiol. 2003;45:256–8.

    Article  PubMed  Google Scholar 

  20. Macleod AD. Wernicke’s encephalopathy and terminal cancer: Case report. Palliat Med. 2000;14:217–18.

    Article  PubMed  CAS  Google Scholar 

  21. Nicolas JM, Fernandez-Sola J, Robert J, et al. High ethanol intake and malnutrition in alcoholic cerebellar shrinkage. QJM. 2000;93:449–56.

    Article  PubMed  CAS  Google Scholar 

  22. San Sebastian M, Jativa R. Beriberi in a well-nourished Amazonian population. Acta Trop. 1998;70:193–6.

    Article  PubMed  CAS  Google Scholar 

  23. Sharma S, Sumich PM, Francis IC, Kiernan MC, Spira PJ. Wernicke’s encephalopathy presenting with upbeating nystagmus. J Clin Neurosci. 2002;9:476–8.

    Article  PubMed  Google Scholar 

  24. Eliakim R, Abulafia O, Sherer DM. Hyperemesis gravidarum: A current review. Am J Perinatol. 2000;17:207–18.

    Article  PubMed  CAS  Google Scholar 

  25. Luke B, Johnson T, Petrie R. The prenatal diet. In: Pioli S, Cardone K, Dabrowski L, editors. Clinical maternal-fed nutrition. 1st ed. Boston: Little, Brown, and Company; 1993. pp 123–46.

    Google Scholar 

  26. Togay-Isikay C, Yigit A, Mutluer N. Wernicke’s encephalopathy due to hyperemesis gravidarum: An under-recognised condition. Aust N Z J Obstet Gynaecol. 2001;41:453–6.

    Article  PubMed  CAS  Google Scholar 

  27. Onishi H, Kawanishi C, Onose M, et al. Successful treatment of Wernicke encephalopathy in terminally ill cancer patients: report of 3 cases and review of the literature. Support Care Cancer. 2004;12:604–08.

    Article  PubMed  Google Scholar 

  28. Murata T, Fujito T, Kimura H, Omori M, Itoh H, Wada Y. Serial MRI and (1)H-MRS of Wernicke’s encephalopathy: report of a case with remarkable cerebellar lesions on MRI. Psychiatry Res. 2001;108:49–55.

    Article  PubMed  CAS  Google Scholar 

  29. Weidauer S, Rosler A, Zanella FE, Lanfermann H. Diffusionweighted imaging in Wernicke encephalopathy associated with stomach cancer: Case report and review of the literature. Eur Neurol. 2004;51:55–7.

    Article  PubMed  Google Scholar 

  30. Butterworth RF, Gaudreau C, Vincelette J, Bourgault AM, Lamothe F, Nutini AM. Thiamine deficiency and Wernicke’s encephalopathy in AIDS. Metab Brain Dis. 1991;6:207–12.

    Article  PubMed  CAS  Google Scholar 

  31. Nishimune T, Watanabe Y, Okazaki H, Akai H. Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria. J Nutr. 2000;130:1625–8.

    PubMed  CAS  Google Scholar 

  32. Adamolekun B, Adamolekun WE, Sonibare AD, Sofowora G. A double-blind, placebo controlled study of the efficacy of thiamine hydrochloride in a seasonal ataxia in Nigerians. Neurology. 1994;44:549–51.

    PubMed  CAS  Google Scholar 

  33. Lee H, Tarter J, Holburn GE, Price RR, Weinstein DD, Martin PR. In vivo localized proton NMR spectroscopy of thiamine-deficient rat brain. Magn Reson Med. 1995;34:313–18.

    Article  PubMed  CAS  Google Scholar 

  34. Ambrose ML, Bowden SC, Whelan G. Thiamin treatment and working memory function of alcohol-dependent people: Preliminary findings. Alcohol Clin Exp Res. 2001;25:112–16.

    Article  PubMed  CAS  Google Scholar 

  35. Parkin AJ, Blunden J, Rees JE, Hunkin NM. Wernicke-Korsakoff syndrome of nonalcoholic origin. Brain Cogn. 1991;15:69–82.

    Article  PubMed  CAS  Google Scholar 

  36. Harper CG, Giles M, Finlay-Jones R. Clinical signs in the Wernicke-Korsakoff complex: A retrospective analysis of 131 cases diagnosed at necropsy. J Neurol Neurosurg Psychiatry. 1986;49:341–5.

    PubMed  CAS  Google Scholar 

  37. Agabio R. Thiamine administration in alcohol-dependent patients. Alcohol Alcohol. 2005;40:155–6.

    PubMed  CAS  Google Scholar 

  38. Thomson AD, Cook CC, Touquet R, Henry JA. The Royal College of Physicians report on alcohol: Guidelines for managing Wernicke’s encephalopathy in the accident and Emergency Department. Alcohol Alcohol. 2002;37:513–21.

    PubMed  CAS  Google Scholar 

  39. Feinberg JF. The Wernicke-Korsakoff syndrome. Am Fam Physician. 1980;22:129–33.

    PubMed  CAS  Google Scholar 

  40. Victor M, Adams RD, Collins GH. The Wernicke-Korsakoff syndrome. A clinical and pathological study of 245 patients, 82 with post-mortem examinations. Contemp Neurol Ser. 1971;7:1–206.

    PubMed  CAS  Google Scholar 

  41. Ishida T, Murayama S, Inoue K, Machinami R, Tomonaga M, Mannen T. Degeneration of posterior column nucleus, inferior olivary nucleus and cerebellar cortex: System degeneration of paraneoplastic disease? Clin Neuropathol. 1990;9:262–7.

    PubMed  CAS  Google Scholar 

  42. Smith TW, DeGirolami U, Henin D, Bolgert F, Hauw JJ. Human immunodeficiency virus (HIV) leukoencephalopathy and the microcirculation. J Neuropathol Exp Neurol. 1990;49:357–70.

    Article  PubMed  CAS  Google Scholar 

  43. Baker KG, Harding AJ, Halliday GM, Kril JJ, Harper CG. Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke’s encephalopathy. Neuroscience. 1999;91:429–38.

    Article  PubMed  CAS  Google Scholar 

  44. Butterworth RF. Pathophysiology of cerebellar dysfunction in the Wernicke-Korsakoff syndrome. Can J Neurol Sci. 1993;20:S123–6.

    PubMed  Google Scholar 

  45. Rugilo CA, Uribe Roca MC, Zurru MC, Capizzano AA, Pontello GA, Gatto EM. Proton MR spectroscopy in Wernicke encephalopathy. AJNR Am J Neuroradiol. 2003;24:952–5.

    PubMed  Google Scholar 

  46. Andersen BB. Reduction of Purkinje cell volume in cerebellum of alcoholics. Brain Res. 2004;1007:10–18.

    Article  PubMed  CAS  Google Scholar 

  47. Phillips SC, Harper C, Kril J. A quantitative histological study of the cerebellar vermis in alcoholic patients. Brain. 1987;110:301–14.

    Article  PubMed  Google Scholar 

  48. Budka H. Neuropathology of human immunodeficiency virus infection. Brain Pathol. 1991;1:163–75.

    Article  PubMed  CAS  Google Scholar 

  49. Schwenk J, Gosztonyi G, Thierauf P, Iglesias J, Langer E. Wernicke’s encephalopathy in two patients with acquired immunodeficiency syndrome. J Neurol. 1990;237:445–7.

    Article  PubMed  CAS  Google Scholar 

  50. Rosemberg S, Lopes MB, Tsanaclis AM. Neuropathology of acquired immunodeficiency syndrome (AIDS). Analysis of 22 Brazilian cases. J Neurol Sci. 1986;76:187–98.

    Article  PubMed  CAS  Google Scholar 

  51. Mukherjee AB, Ghazanfari A, Svoronos S, Staton RC, Nakada T, Kwee IL. Transketolase abnormality in tolazamideinduced Wernicke’s encephalopathy. Neurology. 1986;36:1508–10.

    PubMed  CAS  Google Scholar 

  52. Casirola D, Ferrari G, Gastaldi G, Patrini C, Rindi G. Transport of thiamine by brush-border membrane vesicles from rat small intestine. J Physiol. 1988;398:329–39.

    PubMed  CAS  Google Scholar 

  53. Iwashima A, Wakabayashi Y, Nose Y. Thiamine transport mutants ofSaccharomyces cerevisiae. Biochim Biophys Acta. 1975;413:243–7.

    Article  PubMed  CAS  Google Scholar 

  54. Yoshioka K. Some properties of the thiamine uptake system in rat hepatocytes. Biochim Biophys Acta. 1984;778:201–09.

    Article  PubMed  CAS  Google Scholar 

  55. Irle E, Markowitsch HJ. Widespread neuroanatomical damage and learning deficits following chronic alcohol consumption or vitamin-B1 (thiamine) deficiency in rats. Behav Brain Res. 1983;9:277–94.

    Article  PubMed  CAS  Google Scholar 

  56. Mulholland PJ, Self RL, Stepanyan TD, Little HJ, Littleton JM, Prendergast MA. Thiamine deficiency in the pathogenesis of chronic ethanol-associated cerebellar damage in vitro. Neuroscience. 2005;135:1129–39.

    Article  PubMed  CAS  Google Scholar 

  57. Pannunzio P, Hazell AS, Pannunzio M, Rao KV, Butterworth RF. Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: an in vitro model for the study of cell death mechanisms in Wernicke’s encephalopathy. J Neurosci Res. 2000;62:286–92.

    Article  PubMed  CAS  Google Scholar 

  58. Witt ED. Neuroanatomical consequences of thiamine deficiency: A comparative analysis. Alcohol Alcohol. 1985;20:201–21.

    PubMed  CAS  Google Scholar 

  59. Hazell AS, Todd KG, Butterworth RF. Mechanisms of neuronal cell death in Wernicke’s encephalopathy. Metab Brain Dis. 1998;13:97–122.

    Article  PubMed  CAS  Google Scholar 

  60. Yokote K, Miyagi K, Kuzuhara S, Yamanouchi H, Yamada H. Wernicke encephalopathy: follow-up study by CT and MR. J Comput Assist Tomogr. 1991;15:835–8.

    Article  PubMed  CAS  Google Scholar 

  61. Schroth G, Wichmann W, Valavanis A. Blood-brain-barrier disruption in acute Wernicke encephalopathy: MR findings. J Comput Assist Tomogr. 1991;15:1059–61.

    Article  PubMed  CAS  Google Scholar 

  62. Hakim AM, Pappius HM. Sequence of metabolic, clinical, and histological events in experimental thiamine deficiency. Ann Neurol. 1983;13:365–75.

    Article  PubMed  CAS  Google Scholar 

  63. Hakim AM. The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann Neurol. 1984;16:673–9.

    Article  PubMed  CAS  Google Scholar 

  64. Langlais PJ, Mair RG. Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J Neurosci. 1990;10:1664–74.

    PubMed  CAS  Google Scholar 

  65. Todd KG, Butterworth RF. Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy. Exp Neurol. 1998;149:130–8.

    Article  PubMed  CAS  Google Scholar 

  66. Bettendorff L, Sluse F, Goessens G, Wins P, Grisar T. Thiamine deficiency-induced partial necrosis and mitochondrial uncoupling in neuroblastoma cells are rapidly reversed by addition of thiamine. J Neurochem. 1995;65:2178–84.

    PubMed  CAS  Google Scholar 

  67. Desjardins P, Butterworth RF. Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke’s encephalopathy. Mol Neurobiol. 2005;31:17–25.

    Article  PubMed  CAS  Google Scholar 

  68. Langlais PJ, Anderson G, Guo SX, Bondy SC. Increased cerebral free radical production during thiamine deficiency. Metab Brain Dis. 1997;12:137–43.

    PubMed  CAS  Google Scholar 

  69. Wang JJ, Hua Z, Fentress HM, Singleton CK. JNK1 is inactivated during thiamine deficiency-induced apoptosis in human neuroblastoma cells. J Nutr Biochem. 2000;11:208–15.

    Article  PubMed  CAS  Google Scholar 

  70. Kril JJ. Neuropathology of thiamine deficiency disorders. Metab Brain Dis. 1996;11:9–17.

    Article  PubMed  CAS  Google Scholar 

  71. Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: A target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci. 2005;360:2335–45.

    Article  PubMed  CAS  Google Scholar 

  72. Vogel S, Hakim AM. Effect of nimodipine on the regional cerebral acidosis accompanying thiamine deficiency in the rat. J Neurochem. 1988;51:1102–10.

    Article  PubMed  CAS  Google Scholar 

  73. Blass JP, Gibson GE. Abnormality of a thiamine-requiring enzyme in patients with Wernicke-Korsakoff syndrome. N Engl J Med. 1977;297:1367–70.

    PubMed  CAS  Google Scholar 

  74. Martin PR, McCool BA, Singleton CK. Genetic sensitivity to thiamine deficiency and development of alcoholic organic brain disease. Alcohol Clin Exp Res. 1993;17:31–37.

    Article  PubMed  CAS  Google Scholar 

  75. Mukherjee AB, Svoronos S, Ghazanfari A, et al. Transketolase abnormality in cultured fibroblasts from familial chronic alcoholic men and their male offspring. J Clin Invest. 1987;79:1039–43.

    Article  PubMed  CAS  Google Scholar 

  76. Spruill SC, Kuller JA. Hyperemesis gravidarum complicated by Wernickes encephalopathy. Obstet Gynecol. 2002;99:875–7.

    Article  PubMed  Google Scholar 

  77. Husami T, Abumrad NN. Adverse metabolic consequences of nutritional support: Micronutrients. Surg Clin North Am. 1986;66:1049–69.

    PubMed  CAS  Google Scholar 

  78. Flink EB. Magnesium deficiency in alcoholism. Alcohol Clin Exp Res. 1986;10:590–4.

    Article  PubMed  CAS  Google Scholar 

  79. Abel EL. Maternal alcohol consumption and spontaneous abortion. Alcohol Alcohol. 1997;32:211–19.

    PubMed  CAS  Google Scholar 

  80. Windham GC, Von Behren J, Fenster L, Schaefer C, Swan SH. Moderate maternal alcohol consumption and risk of spontaneous abortion. Epidemiology. 1997;8:509–14.

    Article  PubMed  CAS  Google Scholar 

  81. Adinoff B, Ruether K, Krebaum S, Iranmanesh A, Williams MJ. Increased salivary cortisol concentrations during chronic alcohol intoxication in a naturalistic clinical sample of men. Alcohol Clin Exp Res. 2003;27:1420–7.

    Article  PubMed  CAS  Google Scholar 

  82. Stein-Behrens BA, Lin WJ, Sapolsky RM. Physiological elevations of glucocorticoids potentiate glutamate accumulation in the hippocampus. J Neurochem. 1994;63:596–602.

    Article  PubMed  CAS  Google Scholar 

  83. Horner HC, Packan DR, Sapolsky RM. Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology. 1990;52:57–64.

    Article  PubMed  CAS  Google Scholar 

  84. Yusim A, Ajilore O, Bliss T, Sapolsky R. Glucocorticoids exacerbate insult-induced declines in metabolism in selectively vulnerable hippocampal cell fields. Brain Res. 2000;870:109–17.

    Article  PubMed  CAS  Google Scholar 

  85. Zimitat C, Nixon PF. Glucose loading precipitates acute encephalopathy in thiamine-deficient rats. Metab Brain Dis. 1999;14:1–20.

    Article  PubMed  CAS  Google Scholar 

  86. Hazell AS, Butterworth RF, Hakim AM. Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. J Neurochem. 1993;61:1155–8.

    Article  PubMed  CAS  Google Scholar 

  87. Hazell AS, Rao KV, Danbolt NC, Pow DV, Butterworth RF. Selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke’s encephalopathy. J Neurochem. 2001;78:560–8.

    Article  PubMed  CAS  Google Scholar 

  88. Maschke M, Weber J, Bonnet U, et al. Vermal atrophy of alcoholics correlate with serum thiamine levels but not with dentate iron concentrations as estimated by MRI. J Neurol. 2005;252:704–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Mulholland PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulholland, P.J. Susceptibility of the cerebellum to thiamine deficiency. Cerebellum 5, 55–63 (2006). https://doi.org/10.1080/14734220600551707

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220600551707

Key words

Navigation